

Einfihrung in Angular

Manfred Steyer

Dieses Buch wird verkauft unter http://leanpub.com/einfhrung-in-angular

Diese Version wurde veroffentlicht am 2022-01-02

)

Leanpub

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit Hilfe von Lean-Publishing,
neue Moglichkeiten des Publizierens. Lean Publishing bedeutet die wiederholte Veréffentlichung
neuer Beta-Versionen eines eBooks unter der Zuhilfenahme schlanker Werkzeuge. Das Feedback
der Erstleser hilft dem Autor bei der Finalisierung und der anschlieSenden Vermarktung des
Buches. Lean Publishing unterstiitzt den Autor darin ein Buch zu schreiben, das auch gelesen wird.

© 2021 - 2022 Manfred Steyer

http://leanpub.com/einfhrung-in-angular
http://leanpub.com/
http://leanpub.com/manifesto

Inhaltsverzeichnis

Einleitung 1
Quellcode 1
Kontakt 1
Trainings and Consulting 1

Erste Schritte mit Angular 3
Bevor es losgeht: Werkzeuge installieren. 3
Eine neue Angular-Application erzeugen 4
Thre Angular-Anwendung starten 5
Buildmit CLI 7
Das generierte Projekt erkunden.o o 8
Programmieren mit “Stil”: Bootstrap installieren 10
Zusammenfassung 12

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 13
Interface fiir Datenobjekt erzeugen 14
Angular-Komponente erzeugen 14
Komponentenlogik 16
Auf das Backend zugreifen L o 18
Templates und die Datenbindung 23
Komponenten einbinden 29
Anwendung starten 30
Fehler in der Entwicklerkonsole entdecken 31
Zusammenfassung e 35

Wiederverwendbare Sub-Komponenten und Services 36
Sub-Komponenten mit Event- und Property-Bindings 36
Wiederverwendbare Logik in Services auslagern. 48
Zusammenfassung e 53

Navigationsstrukturen schaffen: Der Angular Router 54
Uberblick 54
Komponenten fiir das Routing einrichten 55
Routing-Konfiguration einrichten 57

Platzhalter in AppComponent hinterlegen. 60

INHALTSVERZEICHNIS

Hyperlinks zum Aktivieren von Routennutzen 60
Routen-Parameter auslesen 62
Auf parametrisierte Routen verweisen 64
ProgrammatischRouten. 64
Bonus: Routingund Module 65
Zusammenfassung e e 69
Niachste Schritte 70
Unser Angular-Buch bei O'Reilly 70

Trainingsund Consulting L 71

Einleitung

In den letzten Jahren habe ich zahlreiche Unternehmen mit der Umsetzung von Unternehmens- und
Industrieanwendungen mit Angular geholfen. Sowohl mit der Einfithrung als auch mit weiterfiih-
renden Konzepten. Mit diesem Buch mochte ich auch Thnen zeigen, wie Sie Angular fiir Ihre Projekte
nutzen konnen.

Dazu erstellen wir gemeinsam im Laufe der Kapitel eine vollstindige Angular-Anwendung und
verfeinern sie nach und nach. Der Fokus liegt sowohl auf der konkreten Umsetzung als auch auf der
Schaffung eines guten Verstiandnisses fiir die dahinterliegende Konzepte. Alle Aspekte, die Sie fiir
eine erste Angular-Anwendung benétigen werden dabei besprochen.

Quellcode

Den Quellcode der Beispielanwendung, auf die sich die Beispiele in diesem Buch beziehen, finden
Sie in unserem GitHub-Account®.

Kontakt

Wenn Sie Fragen oder Feedback haben, erreichen Sie uns am besten via man-
fred.steyer@angulararchitects.io®.

Auflerdem finden Sie mich auch auf Twitter® und Facebook®. Lassen Sie uns in Kontakt bleiben, um
aktuelle Updates rund um Angular zu erhalten.

Trainings and Consulting

Wenn Sie und Ihr Team Unterstiitzung oder Schulungen in Bezug auf Angular benétigen, helfen wir
Ihnen gerne mit unseren Workshops und Beratungen — sowohl vor Ort als auch per Remote. Wir
bieten unter anderem Workshops fiir folgende Themen an:

« Angular Workshop: Strukturierte Einfithrung (3 Tage)
« Advanced Angular: Enterprise Solutions and Architecture (3 Tage)
« Angular Architecture Consulting

'https://github.com/manfredsteyer/angular-intro
’mailto:manfred.steyer@angulararchitects.io
*https://twitter.com/manfredsteyer
“https://www.facebook.com/manfred.steyer

https://github.com/manfredsteyer/angular-intro
mailto:manfred.steyer@angulararchitects.io
mailto:manfred.steyer@angulararchitects.io
https://twitter.com/manfredsteyer
https://www.facebook.com/manfred.steyer
https://github.com/manfredsteyer/angular-intro
mailto:manfred.steyer@angulararchitects.io
https://twitter.com/manfredsteyer
https://www.facebook.com/manfred.steyer

Einleitung 2

« Professional Angular Testing Workshop mit Cypress, Jest, etc. (3 Tage)
« Angular: Reactive Architekturen mit RxJS and NGRX (2 Tage)

« Angular Review Consulting Workshop

« Angular Upgrade Consulting Workshop

Sie finden hier unser volles Workshop-Angebot®.

\ Manfred Steyer, GDE

ANGULAR

ARCHITECTS

INSIDE KNOWLEDGE

Angular Workshop:

Advanced Angular Workshop

Wir bieten unsere Workshop in verschiedenen Formen an: Online, Offentlich oder als
Unternehmens-Workshop sowohl in Englisch als auch in Deutsch.

Wenn Sie Fragen haben, kénnen Sie gerne auf uns zukommen: office@softwarararchitekt.at®.

*https://www.angulararchitects.io/en/angular-workshops/
*mailto:office@softwarararchitekt.at

https://www.angulararchitects.io/en/angular-workshops/
mailto:office@softwarararchitekt.at
https://www.angulararchitects.io/en/angular-workshops/
mailto:office@softwarararchitekt.at

Erste Schritte mit Angular

Bevor es losgeht: Werkzeuge installieren

Bevor wir mit Threr ersten Angular-Anwendung loslegen konnen, miissen wir erst mal ein paar
Werkzeuge einrichten.

Visual Studio Code

Wir nutzen in diesem Buch die freie Entwicklungsumgebung Visual Studio Code’. Sie funktioniert
auf allen wichtigen Betriebssystemen (Linux, OSX, Windows) und ist auflerst leichtgewichtig. Visual
Studio Code unterstiitzt ab Werk die Sprache TypeScript.

Auflerdem existieren zahlreiche Erweiterungen, die die Arbeit mit Frameworks wie Angular
vereinfachen. Um Erweiterungen zu installieren, klicken Sie auf das Symbol Extensions in der linken
Symbolleiste. Anschlielend konnen Sie nach Erweiterungen suchen und diese installieren:

’4 File Edit Selection View Go Run --- Extension: Angular Language Service - angular_steyer 4th_... = m} X

EXTENSIONS: Y O = - [Extension: Angular Language Service X]

Angular Language Service

Angular Language Service
Angular | @ 1.962915

W Angular Language Service 0.11002

Editor services for Angular templates
anatay 28 '”Sta” Editor services for Angular templates

Angular Snippets (Version ... 11.00 o Uninstalled m &
Angular version 11 snippets by John...

John Papa

This extension is recommended based on the files you
recently opened.
Chinese (Simplified) Langu... 1522

;\’/I‘icfsigf(f) Details Feature Contributions Changelog
Language Support for Java... 073.0

Java Linting, Intellisense, formatting, ... H

o Hat Angular Language Service

Angular 10 Snippets - Type... 1003
242 Angular Snippets (TypeScript, Ht... iwmmw“:z,h:;““;,
Mikael Morlund e)

Japanese Language Pack fo... 1522
AR
Microsoft

Angular Schematics 47.0

X x’ master* <& ®O0AO0 ? Live Share @& anonymous (99/100)

Erweiterungen in Visual Studio Code installieren

Fiir die Entwicklung von Angular-Losungen empfehlen wir die folgenden Erweiterungen:

"https://code.visualstudio.com

https://code.visualstudio.com/
https://code.visualstudio.com/

Erste Schritte mit Angular 4

« Angular Language Service: Der Angular Language Service wird vom Angular-Team bereit-
gestellt und erlaubt Angular-bezogene Codevervollstandigungen in HTML-Templates. Aufler-
dem weist der Language Service auch auf mogliche Fehler in HTML-Templates hin.

« Angular Schematics: Erlaubt das Generieren von Building-Blocks wie Angular-Komponenten
tiber das Kontextmentii von Visual Studio Code.

 Debugger for Chrome: Erlaubt das Debuggen von JavaScript-Anwendungen, die in Chrome
ausgefithrt werden.

Neben Visual Studio Code haben wir auch mit den kommerziellen Produkten WebStorm,
PhpStorm bzw. Intelli] von Jetbrains (https://www.jetbrains.com/) sehr gute Erfahrungen
gemacht.

Angular CLI

Um keine Zeit mit dem Einrichten aller benétigten Werkzeuge zu verlieren, bietet das Angular-
Team das sogenannte Angular Commandline Interface, kurz Angular CLI% an. Die CLI generiert
nicht nur das Grundgeriist der Anwendung, sondern auf Wunsch auch die Grundgeriiste weiterer
Anwendungsbestandteile wie z. B. Komponenten.

Auflerdem kimmert sie sich um das Konfigurieren des TypeScript-Compilers und einer Build-
Konfiguration zur Erzeugung optimierter Bundles. Werkzeuge fiir die Testautomatisierung richtet
die CLI ebenfalls ein.

Die CLI lasst sich leicht tiber den Package-Manager npm beziehen, der sich im Lieferumfang von
Node.js” befindet. Auflerdem nutzt die CLI Node.js als Laufzeitumgebung. Wir haben gute Erfah-
rungen mit den jeweiligen Long-Term-Support-Versionen (LTS-Versionen) gemacht. Der Einsatz
alterer Versionen kann zu Problemen fithren.

Sobald Node.js installiert ist, kann die CLI mittels npm eingerichtet werden:
npm install -g @angular/cli

Der Schalter -g bewirkt, dass +npm+ das Werkzeug systemweit, also global, einrichtet, sodass es
tiberall zur Verfiigung steht. Ohne diesen Schalter wiirde npm das adressierte Paket lediglich fiir
ein lokales Projekt im aktuellen Ordner einrichten. Nach der Installation steht die CLI tber das
Kommando ng zur Verfiigung.

Eine neue Angular-Application erzeugen

Ein Aufruf von

®https://cli.angular.io
*https://nodejs.org

https://cli.angular.io/
https://nodejs.org/
https://cli.angular.io/
https://nodejs.org/

Erste Schritte mit Angular 5

ng new flight-app

generiert das Grundgeriist einer neuen Angular-Anwendung, die den Namen flight-app erhalt.
Dazu stellt uns die CLI ein paar Fragen:

CA\WINDOWS'system32\cmd.exe — o %

>ng new flight-app
Would you like to add Angular routing?
Which stylesheet format would you like to use?

flight-app/angular.json (3231 bytes)
flight-app/package.json (1872 bytes)
flight-app/README.md (1055 bytes)
flight-app/tsconfig.json (783 bytes)
flight-app/.editorconfig (274 bytes)
flight-app/.gitignore (604 bytes)
flight-app/.browserslistrc (703 bytes)
flight-app/karma.conf.js (1427 bytes)
flight-app/tsconfig.app.json (287 bytes)
flight-app/tsconfig.spec.json (333 bytes)
flight-app/src/favicon.ico (948 bytes)
flight-app/src/index.html (295 bytes)
flight-app/src/main.ts (372 bytes)

ng new stellt ein paar Fragen, bevor es ein neues Projekt generiert

Je nach Angular-Version konnen diese Fragestellungen etwas variieren. Wir gehen hier von
folgenden Einstellungen aus:

« Add Angular Routing: Diese Frage beantworten wir hier mit No. Um das Thema Routing
kiimmern wir uns in einem spateren Kapitel.

« Stylesheet Format: Wir empfehlen hier SCSS, eine Ubermenge von CSS. Die Angular CLI
kompiliert diese Dateien fiir den Browser nach CSS.

Da ng new auch zahlreiche Pakete via npm bezieht, kann der Aufruf etwas langer dauern.

lhre Angular-Anwendung starten

Um Ihre Anwendung zu starten, wechseln Sie in den generierten Projektordner. Dabei handelt es
sich um jenen Ordner, der auch die Datei angular . json enthélt. Ein Aufruf von ng serve startet die
Anwendung in einem Demo-Webserver:

cd flight-app

ng serve -0

Der Schalter -o 6ffnet einen Browser, der die Anwendung anzeigt. Standardmafig findet sich diese
Anwendung unter http://localhost :4200. Ist Port 4200 schon belegt, erkundigt sich ng serve nach
einer Alternative. Auflerdem nimmt der Schalter - -port den gewtinschten Port gleich beim Start von
ng serve entgegen:

Erste Schritte mit Angular

1 ng serve -o --port 4242

Die im Browser angezeigte Anwendung sieht wie folgt aus:

) FlightApp x + — 0 %

C @ hitp://localhost:4200 % N e :

A Welcome

ﬂ flight-app app is running!

Resources

Here are some links to help you get started:

® Leamn Angular > <> Cll Documentation > a Angular Blog >

Next Steps
What do you want to do next with your app?

+ New Component + Angular Material + Add PWA Support

+ Add Dependency -+ Run and Watch Tests -+ Build for Production

ng generate component xyz

Generierte Angular-Anwendung
Auch hier kann es von Version zu Version zu Abweichungen kommen.

Der fiir die Entwicklung gedachte Befehl ng serve macht aber noch ein wenig mehr: Er tiberwacht
samtliche Quellcodedateien und stofit das Kompilieren sowie Generieren der Bundles erneut an,
wenn sie sich dndern. Danach aktualisiert er auch das Browserfenster.

Um das auszuprobieren, konnen Sie mit Visual Studio Code die Datei src\app\app . component . html
Offnen und z. B. das erste Vorkommen von Welcome durch Hello World! ersetzen. Daraufhin

sollte ng serve den betroffenen Teil der Anwendung neu kompilieren, bundeln und den Browser
aktualisieren:

Erste Schritte mit Angular 7

% File Edit Selection --- app.component.html - flig.. = O
>ng serve -o
& app.componenthtml X o m - Browser application bundle generation complete.

src > app ? B app.componenthtml > @ div.toolbar > & span Initial Chunk Files Names Size
299 /style> 5 vendor .41 MB
300 polyfills . kB
301 !-- Toolbar --> St¥1es . kB
: " " " " main a kB
div class="toolbar" role="banner"> T 15 kB
<img
width="40" Initial Total | 3.28 MB
alt="Angular Logo" 3
src=" Build at: 2020-12-20T14:32:18.933Z - Hash: 9c4399067a948b8776cb -
/> Time: 6247ms

Hello WDrldh
<div class="spacer"></div>
<a aria-label="Angular on twitter" target="_b
<svg id="twitter-logo" height="24" data-nam -
<rect width="400" height="400" fill="none &= Compiled successfully.
<path d="M153.62,301.59c94.34,0,145.94-78 . y Browser application bundle generation complete.
</svg>

/div>

** Angular Live Development Server is listening on localhost:4200,
open your browser on http://localhost:4200/ **

Initial Chunk Files | Names | Size
| styles | 344.23 kB
| main | 56.98 kB

div class="content" role="main"> > unchanged chunks

<!-- Highlight Card --> Build at: 2020-12-20T14:32:39.634Z - Hash: 17e8a63f33f349c15a49 -
<div class="card highlight-card card-small"> - Time: 484ms

Compiled successfully.

@®» ®O0AO0 # LiveShare + ESLint Prettier % [offf & Q

i - 1532
g @
O Hi R W DU 22020 EB6

Generierte Angular-Anwendung dndern

Die automatische Generierung der Bundles nach einer Anderung am Programmcode funktioniert
meist ganz gut, aber ab und an kommt die CLI aus dem Tritt. Das ist unter anderem dann der Fall,
wenn Sie mehrere Dateien rasch hintereinander speichern. Auch das Umbenennen von Dateien
bringt diesen Mechanismus aus dem Konzept.

Abhilfe schafft hier ein erneutes Speichern der betroffenen Dateien oder — wenn alle Stricke reiflen
— ein Neustart von ng serve.

Build mit CLI

Wihrend ng serve fiir die Entwicklung sehr komfortabel ist, eignet es sich nicht fiir den Produkti-
onseinsatz. Um Bundles fiir die Produktion zu generieren, nutzen Sie die Anweisung

ng build

Seit Angular CLI 12 fithrt ng build zahlreiche Optimierungen, die zu kleineren Bundles fiihren,
automatisch durch. Davor musste man diese Optimierungen explizit mit dem Schalter --prod
anfordern.

Ein Beispiel fiir eine solche Optimierung ist die Minifizierung, bei der unnétige Zeichen wie
Kommentare oder Zeilenschaltungen entfernt sowie Thre Anweisungen durch kiirzere Gegenstii-
cke ersetzt werden. Ein weiteres Beispiel ist das sogenannte Tree-Shaking, das nicht benétigte

© 00 N O O b W N =

N
()

Erste Schritte mit Angular 8

Framework-Bestandteile identifiziert und entfernt. Diese Optimierungen verlangsamen natiirlich
den Build-Prozess ein wenig.

Die generierten Bundles finden sich im Ordner dist/flight-app. Im Rahmen der Bereitstellung
miissen Sie diese Dateien lediglich auf den Webserver Ihrer Wahl kopieren. Da es sich aus Sicht
des Webservers hierbei um eine statische Webanwendung handelt, miissen Sie dort auch keine
zusatzliche Skriptsprache und kein Web-Framework installieren.

Das generierte Projekt erkunden

Lassen Sie uns nun ein paar der generierten Programmdateien unter src/app etwas genauer
betrachten. Starten wir dabei mit der generierten AppComponent. Es handelt sich dabei um jene
Komponente, die Angular beim Programmstart anzeigt. Wie die meisten Angular-Komponenten
besteht sie aus mehreren Dateien:

« app.component. ts: TypeScript-Datei, die das Verhalten der Komponente definiert.

« app.component.html: HTML-Datei mit der Struktur der Komponente.

« app.component.scss: Datei mit lokalen Styles fiir die Komponente. Allgemeine Styles kénnen
in die besprochene styles.scss eingetragen werden.

Bei der app . component . ts handelt es sich um eine einfache Klasse mit einer Eigenschaft title:

import { Component } from '@angular/core';

@Component({
selector: 'app-root',
templateUrl: './app.component.html',
styleUrls: ['./app.component.scss']
P
export class AppComponent {
title = '"flight-app';

Der title ist vom Typ string. Letzteres muss hier gar nicht explizit angeben werden: TypeScript
kann sich diesen Umstand aus dem zugewiesenen Standardwert herleiten.

Die Angabe von export definiert, dass die Klasse auch in anderen Dateien der Anwendung genutzt
werden darf.

Die Klasse wurde mit dem Dekorator Component versehen. Dekoratoren definieren Metadaten fiir
Programmkonstrukte wie z. B. Klassen. Der Component teilt beispielsweise Angular mit, dass diese
Klasse eine Komponente reprasentiert. Das Programmcode importiert den Dekorator in der ersten
Zeile aus dem Paket @angular/core.

© 00 N O O b W N =

[S U
O b W0 N =~ O

Erste Schritte mit Angular 9

Die Metadaten im Dekorator beinhalten den Selektor der Komponente. Das ist in der Regel der Name
eines HTML-Elements, das die Komponente reprasentiert. Um die Komponente aufzurufen, konnen
Sie also die folgende Schreibweise in einer HTML-Datei verwenden:

<app-root></app-root>

Der Dekorator verweist auflerdem auf das HTML-Template der Komponente und ihre SCSS-Datei
mit lokalen Styles. Letztere ist standardméflig leer. Die HTML-Datei beinhaltet den Code fiir die
oben betrachtete Startseite. Die ist zwar schon, enthalt aber eine Menge HTML-Markup. Ersetzen
Sie mal zum Ausprobieren den gesamten Inhalt dieser HTML-Datei durch folgendes Fragment:

<h1>{{title}}</h1>

Wenn Sie nun die Anwendung starten (falls noch nicht geschehen: ng serve -o), sollten Sie
den Inhalt der Eigenschaft title als Uberschrift sehen. Die beiden geschweiften Klammernpaare
definieren eine sogenannte Datenbindung. Angular bindet also die angegebene Eigenschaft an die
jeweilige Stelle im Template.

Mehr Informationen zu Datenbindungen finden Sie in den nachsten beiden Kapiteln. Um diesen
Rundgang durch die generierten Programmdateien abzuschlieffen, méchten wir jedoch noch auf
drei weitere generierte Dateien hinweisen. Eine davon ist die Datei app.module.ts, die ein Angular-
Modul beinhaltet:

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { AppComponent } from './app.component';

@NgModule({

declarations: [
AppComponent

1,

imports: |
BrowserModule

1,

providers: [],

bootstrap: [AppComponent]

b
export class AppModule { }

Angular-Module sind Datenstrukturen, die zusammengehorige Building-Blocks wie Komponenten
zusammenfassen. Technisch gesehen, handelt es sich dabei um eine weitere Klasse. Sie ist in den
meisten Féllen leer und dient lediglich als Trager von Metadaten, die iber den NgModule-Dekorator
angegeben werden.

Lassen Sie uns einen Blick auf die Eigenschaften von +NgModule+ werfen:

Erste Schritte mit Angular 10

« declarations: Definiert die Inhalte des Moduls. Derzeit beschrianken diese sich auf unsere
AppComponent. Sie wird in der dritten Zeile unter Angabe eines relativen Pfads, der auf die
Datei app . component . ts verweist, importiert. Die Dateiendung . ts wird hierbei weggelassen.

- imports: Importiert weitere Module. Das gezeigte Beispiel importiert lediglich das
BrowserModule, das alles beinhaltet, um Angular im Browser auszufithren. Das ist auch
der Standardfall.

- providers: Hier konnte man sogenannte Services, die Logiken fiir mehrere Komponenten
anbieten, registrieren. Kapitel XY geht darauf ein.

« bootstrap: Diese Eigenschaft verweist auf samtliche Komponenten, die beim Start der Anwen-
dung zu erzeugen sind. Haufig handelt es sich dabei lediglich um eine einzige Komponente.
Diese sogenannte Root-Component reprasentiert die gesamte Anwendung und ruft dazu
weitere Komponenten auf.

Das Modul, das die Root-Component bereitstellt, wird auch als Root-Module bezeichnet. Angular
nimmt es beim Start der Anwendung entgegen und rendert die darin zu findende Root-Component.
Diese Komponente ist in der index.html aufzurufen:

<body>
<app-root></app-root>
</body>

Sowohl ng serve als auch ng build erginzen diese index.html auch um Verweise auf die erzeugten
JavaScript-Bundles, die unseren Quellcode enthalten.

Programmieren mit “Stil”: Bootstrap installieren

Da auch “das Auge mitprogrammiert”, wollen wir an dieser Stelle ein paar vordefinierte Styles ins
Spiel bringen. Wir nutzen hier die populére Stylesheet-Bibliothek Bootstrap.

Der Vorteil von Bootstrap liegt neben seiner auflerst weiten Verbreitung in der Tatsache,
dass es unaufdringlich ist. Es definiert lediglich ein paar (S)CSS-Klassen, die man auf
bekannte HTML-Elemente anwenden kann. Im Gegensatz zu anderen Losungen muss
man also zunéchst keine weiteren HTML-Elemente erlernen.

Da das Standard-Design von Bootstrap ein wenig langweilig ist, nutzen wir auch ein freies Bootstrap
Theme. Es nennt sich Paper-Design und kommt von Creative Tim'. Dazu konnten Sie nun natiirlich
Bootstrap via npm installieren und die CSS-Dateien des Themes in Thr Projekt kopieren.

Um diese Aufgabe ein wenig zu vereinfachen, haben wir ein Meta-Paket bereitgestellt. Sie konnen
es einfach via ng add installieren:

°https://www.creative-tim.com

https://www.creative-tim.com/
https://www.creative-tim.com/

a b w N

Erste Schritte mit Angular 11

ng add @angular-architects/paper-design

Bei ng add handelt es sich um einen Mechanismus der CLI, der beim Hinzufiigen von Paketen hilft.
Er installiert ein Paket und fiihrt ein Skript aus, das das Paket einrichtet. Natiirlich konnte man die
dazu notwenigen Schritte auch manuell ausfithren.

Die Ausfiihrung von ng add gestaltet sich wie folgt:

CAWindows\System32\cmd.exe — O X

>ng add @angular-architects/paper-design

src/app/app.component.ts => src/app/bak/app.component.ts.bak
src/app/app.component.html => src/app/bak/app.component.html.bak
src/app/app.module.ts => src/app/bak/app.module.ts.bak
src/app/app.component.html (324 bytes)

src/app/app.component.ts (234 bytes)

src/app/app.module.ts (529 bytes)

src/app/navbar/navbar.component.html (4717 bytes)
src/app/navbar/navbar.component.ts (743 bytes)
src/app/sidebar/sidebar.component.html (999 bytes)
src/app/sidebar/sidebar.component.ts (184 bytes)
src/assets/paper-design/angular2-logo.png (20156 bytes)
angular.json (3193 bytes)

src/index.html (581 bytes)

Generierte Angular-Anwendung

Wie Sie hier sehen, verschiebt dieser Befehl die AppComponent und das AppModule in den Ordner
bak (siehe Zeilen mit RENAME). Danach generiert er die beiden erneut im Ordner src/app. Aulerdem
generiert er eine NavbarComponent und eine SideBarComponent fiir die Navigation.

Danach erweitert dieser Aufruf vonng add die Dateien angular. json und index.html. Erstere erhélt
Verweise auf die Style-Dateien von Bootstrap und dem freien Paper Design-Theming von Creative
Tim:

"styles": |
"node_modules/@angular-architects/paper-design/assets/css/bootstrap.css”,

"node_modules/@angular-architects/paper-design/assets/scss/paper-dashboard.scss"”,

"src/styles.scss”

] !

In diesem Listing sieht man tibrigens auch die von ng new generiere Datei src/styles.scss, in der
Sie Thre eigenen globalen Styles hinterlegen konnen.

Erste Schritte mit Angular 12

Die index.html erhélt zwei 1ink-Elemente zum Laden des vom Theming verwendeten Webfonts.

Leider liest ng serve globale Konfigurationsdateien wie die angular.json nur beim
Programmstart. Falls ng serve bereits lauft, miissen Sie es deswegen beenden (Strg+C)
und neu starten.

Startet man die Anwendung erneut mit ng serve -o, ergibt sich das folgende Bild:

Y FlightApp X+ B o *
C @ http://localhost:4200 *r @ :
) rLGHTS42 Search.. e B Lo @

Hello World!

Anwendung mit Style-Bibliothek

Links sieht man die generierte SideBarComponent und im oberen Bereich die ebenfalls generierte
NavBarComponent. Samtliche Links sind derzeit noch Dummies — aber das wird sich im Laufe des
Buchs noch dndern.

Tipp: Werfen Sie einen Blick auf den Quellcode der beiden generierten Komponenten
und der in der angular. json erzeugten Eintrage. Wie schon erwiahnt, konnten Sie diese
Dateien auch manuell einrichten und erweitern. Da das jedoch in der Regel monoton und
fehleranfallig ist, freuen wir uns iiber ng add.

Zusammenfassung

Die Angular CLI hilft beim Einrichten, Ausfithren und Bauen von Angular-Projekten. Es geniigt ein
einfaches ng new, und schon kénnen Sie loslegen. Wie bei jedem generierten Projekt-Setup miissen
Sie sich jedoch ein wenig Zeit nehmen, um sich mit den generierten Dateien vertraut zu machen.

lhr erste Angular-Anwendung:
Komponenten, Datenbindung und
HTTP-Zugriff

Um Thnen die einzelnen Aspekte von Angular zu vermitteln, verwenden wir in diesem Buch ein
durchgéngiges Beispiel. Sie konnen es in unserem GitHub-Account'" finden. Dabei handelt es sich
um eine Anwendung zum Buchen von Fliigen. Wir setzen dazu auf die im letzten Kapitel generierte
Anwendung auf:

Y slightApp x 4+ = b &
C @ http//localhost:4200 o N @
0} rLcHTS 42 B o @

Flight Search

From:

Hamburg

3 Hamburg Graz 2612.202019:42 Select

4 Hamburg Graz 2612.2020 21:42 Select

35 Hamburg Graz 2712.2020 00:42 Select
Basket

.
L

“to": “Graz",
“date": "2028-12-26T20:42:45.3194362+008:00" ,
“delayed": false

Anwendung zum Suchen nach Fliigen

https://github.com/manfredsteyer/angular-intro

https://github.com/manfredsteyer/angular-intro
https://github.com/manfredsteyer/angular-intro

o N O O b W N =

1

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 14

Interface fur Datenobjekt erzeugen

Da wir mit Fligen arbeiten wollen, brauchen wir einen Datentyp der die Struktur der Flug-
Objekte widerspiegelt. Hierzu legen wir zunéchst im Ordner src/app eine Datei flight.ts mit dem
folgenden Interface an:

// src/app/flight.ts
export interface Flight {
id: number;
from: string;
to: string;
date: string;
delayed?: boolean;

Angular-komponente erzeugen

Nun erstellen wir eine Angular-Komponente fiir den besprochenen Anwendungsfall erstellen.
Wechseln Sie dazu auf die Konsole. Fithren Sie im Hauptverzeichnis der Anwendung (Verzeichnis
mit der angular. json) den folgenden Befehl aus:

ng generate component flight-search

Die Befehle der CLI lassen sich abkiirzen, die betrachtete Anweisung konnte man
beispielsweise auch wie folgt formulieren:

1 ng g c flight-search

Mit dem in Kapitel 1 erwahnten Visual Studio Plug-in Angular Schematics Angular
Schematics lasst sich dieser CLI-Befehl auch direkt tiber Visual Studio Code anstof3en.
Wiéhlen Sie dazu die Anweisung Angular: Generate a component aus dem Kontextmenii
des gewiinschten Ordners.

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 15

File Edit Selection View Go Run Terminal Help flight-app - Visual Studio Code — O X

EXPLORER

> OPEN EDITORS

~ FLIGHT-APP
> BE wvscode
> I dist New File
> Iy e2e New Folder
> I node_modul - .
v B src Reveal in File Explorer Shift+Alt+R
T Open in Integrated Terminal
> I bak Find in Folder... Shift+Alt+F
> [navbar
> B sidebar Cut Ctrl+X
S BB ts Copy Ctrl+C
B app.comg
§ app.comg Copy Path Shift+Alt+C
& appcomi Copy Relative Path Ctrl+K Ctrl+Shift+C
@ app.comg | Commands | Ctl + Shift + P
B app.modt Rename F2 ‘
flight.ts Delete Delete Go to File (] + (R

> assets A0 Filee | ot |+ Shift | 4
Angular: Generate a component Find in Files (Ctrl)+ | Shift] + (F

> M environmel

faviconiico Angular: Generate a service t Debugging Fs
& indexhtml Angular: Generate a module
’ . gle Terminal cul + &
> OUTLINE Angular: Generate another schematic 9
> TIMELINE Nx generate (ui)

> NPM SCRIPTS

° 03-Erste-Schritte-mit- Deploy to Function App... W ESlint & 0

Komponente in Visual Studio Code generieren

Nach dem Auswihlen dieser Anweisung stellt [hnen Visual Studio Code mehrere Fragen.
Die Frage nach dem Komponentennamen beantworten Sie analog zum oben diskutierten
Befehl mit flight-search. Die anderen Fragen konnen Sie einfach mit Enter quittieren,
um mit den Standardeinstellungen der CLI vorlieb zu nehmen.

Die Angular CLI generiert darauthin mehrere Dateien fiir die gewiinschte Komponente:

© 00 N O O b W N =

=
N O

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 16

C\Windows\System32\cmd.exe - O X

>ng generate component flight-search
src/app/flight-search/flight-search.component.html (28 bytes)
src/app/flight-search/flight-search.component.spec.ts (669 bytes)
src/app/flight-search/flight-search.component.ts (303 bytes)

src/app/flight-search/flight-search.component.scss (@ bytes)
src/app/app.module.ts (649 bytes)

Komponente zum Suchen nach Fliigen mit der CLI generieren

Diese Dateien richtet die CLI im Ordner src/app/flight-search ein:

« flight-search.component.html: Das Template der Komponente. Es bestimmt, wie Angular die
Komponente darstellt.

« flight-search.component.ts: Die TypeScript-Klasse, die die Komponente représentiert. Sie
definiert das gewiinschte Verhalten.

« flight-search.component.scss: Die Stylesheet-Datei mit lokalen Styles fiir unsere Komponen-
te.

Die Dateien flight-search.component.ts* und flight-search.component.html werden wir in den
nachfolgenden Abschnitten néher betrachten und fiir unsere Zwecke anpassen.

Komponentenlogik

Die generierte Datei flight-search.component.ts beinhaltet das Grundgeriist fiir unsere Kompo-
nentenlogik:

// src/app/flight-search/flight-search.component.ts
import { Component, OnInit } from '@angular/core’;

@Component ({
selector: 'app-flight-search',
templateUrl: './flight-search.component.html',
styleUrls: ['./flight-search.component.scss']

)

export class FlightSearchComponent implements OnlInit {

constructor() { }

13
14
15
16

© 00 N O O b W N =

NN N S K R 1 N vy s s
N »~ © © 0 1 O O b W N =~ O

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 17

ngoOnInit(): void {
}

Viele der hier generierten Konstrukte haben wir bereits in Kapitel 1 im Rahmen der AppComponent
besprochen. Allerdings mdchten wir hier Thre Aufmerksamkeit auf ein paar Details lenken:

« Der Selektor lautet app-flight-search. Das Prafix app wurde von der CLI eingefiigt. Diese
Prafixe sollen Namenskonflikte mit Komponenten aus Bibliotheken verhindern.

« Die generierte Klasse nennt sich F1ightSearchComponent, wihrend die zugrunde liegende Datei
den Namen flight-search.component.ts erhalten hat. Hierbei handelt es sich um die tiblichen
Namenskonventionen in der Welt von Angular.

« FlightSearchComponent implementiert das Interface Oninit, das wiederum die Methode
ngOnInit vorgibt. Diese Methode ruft Angular nach dem Initialisieren der Komponente auf,
und somit kann sie fiir Initialisierungen von Eigenschaften verwendet werden.

Lassen Sie uns nun dieses Grundgeriist ein wenig ausbauen, um eine Suche nach Fligen zu
ermoglichen:

// src/app/flight-search/flight-search.component.ts

import { Component, OnInit } from '@angular/core';
import { Flight } from '../flight';

@Component ({
selector: 'app-flight-search',
templateUrl: './flight-search.component.html',
styleUrls: ['./flight-search.component.scss']

P

export class FlightSearchComponent implements OnlInit {

from = 'Hamburg';

to = 'Graz';

flights: Array<Flight> = [];
selectedFlight: Flight | null = null;

constructor() {

}

ngOnInit(): void {
}

23
24
25
26
27
28
29
30
31
32

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 18

search(): void {
// Implementierung folgt weiter unten.

select(f: Flight): void {
this.selectedFlight = f;

Die Eigenschaften from und to repréasentieren die Suchkriterien fiir die gewiinschten Fliige. Die
Standardwerte sollen hier verhindern, dass wir spater immer wieder die gleichen Suchkriterien
eingeben missen. Auflerdem lassen sie uns auf den ersten Blick erkennen, ob der weiter unten
angestrebte automatische Abgleich zwischen den Eigenschaften und den Textfeldern funktioniert.

Das Array flights nimmt die gefundenen Flige auf. Es ist mit dem zu erzeugten Interface Flight
typisiert.

Die Eigenschaft selectedFlight reprasentiert den ausgewahlten Flug. Damit sie initial den Wert
null bekommen kann, ist sie vom Typ Flight | null.

Angular verwendet standardmafig TypeScript im Strict Mode. Das bedeutet unter ande-
rem, dass Sie explizit angeben miissen, ob Eigenschaften den Wert null bzw. undefined
aufnehmen dirfen. In diesen Féllen zwingt Sie TypeScript auch dazu, vor der Verwendung
gegen diese Werte zu priifen.

Die Methode search kiimmert sich um das Abrufen der Fliige. Wir werden uns um ihre Implemen-
tierung gleich kiimmern. Die Methode select notiert sich den vom Benutzer ausgewahlten Flug.

Auf das Backend zugreifen

Fiir Thre Hauptaufgabe muss die F1ightSearchComponent via HTTP auf eine Web-API mit Fligen
zugreifen. Fiir solche Vorhaben bietet Angular die Klasse HttpClient. Da diese Klasse wiederver-
wendbare Dienste anbietet, ist auch von einem Service die Rede.

Um Zugriff auf den Service zu bekommen, miissen Sie zunédchst das HttpClientModule in Thr
AppModule importieren:

© 00 =N O O & W N =~

T N S N S o S = S N N S
0 O 00 N O O b W N =~ O

O 00 N O O & W N =~

O = = =S
0 N O O b W N =~ o

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff

// src/app/app.module.ts

[...]
// Diese Zeile einfligen:
import { HttpClientModule } from '@angular/common/http';

@NgModule({

imports: [
//Diese Zeile unter *imports* einfligen:
HttpClientModule,
BrowserModule

1,

declarations: [
[...]

1,

providers: [],

bootstrap: [
AppComponent

P
export class AppModule { }

19

Danach koénnen Sie Giber den Konstruktor der F1ightSearchComponent eine Instanz von HttpClient

anfordern:

// src/app/flight-search/flight-search.component.ts

import { HttpClient } from '@angular/common/http';
import { Component, OnInit } from '@angular/core';
import { Flight } from '../flight';

@Component ({
selector: 'app-flight-search',
templateUrl: './flight-search.component.html"',
styleUrls: ['./flight-search.component.scss']

1))

export class FlightSearchComponent implements OnlInit {

from = 'Hamburg';

to = 'Graz';

flights: Array<Flight> = [];
selectedFlight: Flight | null = null;

19
20
21
22
23
24
25

© 00 N O O b W N =

NN NN NN R R 1 s sy Ly s s
O b 0O N » © O 00 N O O b W N =~ O

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 20

// HttpClient anfordern:
constructor(private http: HttpClient) {

}

Diese Vorgehensweise nennt sich auch Dependency Injection Dependency Injection bzw. Constructor
Injection: Die benoétigte Serviceinstanz wird demnach von Angular in den Konstruktor injiziert. Das
bedeutet, dass Angular entscheidet, welche konkrete Auspragung des HttpClient die Komponente
erhalt. Wahrend Angular fir den Produktionsbetrieb den “richtigen” HttpClient erzeugt, konnte
es fiir automatisierte Tests eine Dummy-Implementierung verwenden, die HTTP-Zugriffe lediglich
simuliert.

Da wir nun unsere HttpClient-Instanz haben, konnen wir damit innerhalb von search auf die Web-
API zugreifen:

// src/app/flight-search/flight-search.component.ts

// Wir benbétigen diese drei Importe filr den HttpClient:
import { HttpClient, HttpHeaders, HttpParams } from '@angular/common/http';

import { Component, OnInit } from '@angular/core’;
import { Flight } from '../flight';

@Component ({
selector: 'app-flight-search’,
templateUrl: './flight-search.component.html',
styleUrls: ['./flight-search.component.scss']

1))

export class FlightSearchComponent implements OnlInit {

from = 'Hamburg';
to = 'Graz';
flights: Array<Flight> = [];

selectedFlight: Flight | null = null;

constructor(private http: HttpClient) {
}

ngonInit(): void {
}

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 21

search(): void {
const url = 'http://demo.ANGULARarchitects.io/api/flight’;

const headers = new HttpHeaders()
.set('Accept', 'application/json');

const params = new HttpParams()
.set('from', this.from)
.set('to', this.to);

this.http.get<Flight[]>(url, {headers, params}).subscribe({
next: (flights) => {
this.flights = flights;
},
error: (err) => {

console.error('Error', err);

});

select(f: Flight): void {
this.selectedFlight = f;

Die Methode search ruft nun bei einer von uns bereitgestellten Web API (“Rest APT”) Fliige ab und
hinterlegt sie in der Eigenschaft f1ights:

« Die zu nutzenden HTTP-Kopfzeilen Kopfzeile HTTP-Kopfzeile stellt der HttpClient mit einer
Instanz von HttpHeaders dar. Das Beispiel iibergibt die Kopfzeile Accept, um anzugeben, dass
wir JSON als Antwortformat wiinschen. Dabei handelt es sich um das einzige Datenformat,
das Angular ab Werk unterstiitzt.

« Die zu iibersendenden URL-Parameter URL-Parameter reprasentiert der HttpClient mit einer
HttpParams-Auflistung.

- Bitte beachten Sie, dass die beiden Aufrufe von set die aktuelle Auflistung nicht verdndern,
sondern eine neue Auflistung zuriickliefern. Deswegen verkettet das Beispiel auch die einzel-
nen Aufrufe von set.

« Die Methode get fiihrt einen HTTP-Zugriff unter Verwendung der HTTP-Methode GET durch.
Diese Methode kommt typischerweise zum Abrufen von Daten zum Einsatz.

© 0O N O O & W N =

I =V
W N s,

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 22

« Als Ergebnis des HTTP-Aufrufs erwartet der HttpClient ein JSON-Dokument, das er in ein
JavaScript-Objekt umwandelt. Den Datentyp dieses Objekts nimmt get als Typparameter
entgegen

« Das Abrufen von Daten erfolgt im Browser asynchron, also im Hintergrund. Sobald die
Daten vorliegen, bringt der HttpClient eine der beiden bei subscribe registrierten Methoden
zur Ausfithrung: next im Erfolgsfall und error in Fehlerfall. Das Objekt, das die Methode
subscribe anbietet, ist Gibrigens ein sogenanntes Observable.

« Neben der hier verwendeten Methode get bietet der HttpClient noch weitere Methoden fiir
andere Arten von HTTP-Zugriffen.

Methode Semantik

get<T>(url, options) Abrufen von Ressourcen.

post<T>(url, body, options) ~ Hinzufiigen einer Ressource oder Anstoflen einer
Verarbeitung am Server.

put<T>(url, body, options) Hinzufiigen oder Aktualisieren einer Ressource.

patch<T>(url, body, options) Aktualisieren einer Ressource. Es miissen nur die

gednderten Eigenschaften iibergeben werden.
delete<T>(url, options) Loschen einer Ressource.

Der Begriftf Ressource kommt aus der Welt von HTTP und bezeichnet das abgerufene oder zu
sendende Objekt bzw. Dokument. Der Typparameter T steht fiir den Datentyp der Antwort. Im
oben betrachteten Beispiel war dasFlight[]. Jene Methoden, die Daten zum Server senden, weisen
einen Parameter body auf. Dieser nimmt das zu sendende Objekt entgegen. Fiir die Ubertragung
per HTTP wandelt der HttpClient es in ein JSON-Objekt um. Der Parameter options erhélt ein
Objekt, das die HTTP-Anfrage naher beschreibt. Im oben gezeigten Beispiel verweist es auf die zu
sendenden Kopfzeilen sowie auf die zu verwendenden URL-Parameter.

Bitte beachten Sie auch, dass nicht jede Web-API alle hier beschriebenen Methoden unterstiitzt.

Zur Veranschaulichung erzeugt die folgende Methode einen neuen Flug.

createDemoFlight(): void {
const url = 'http://demo.ANGULARarchitects.io/api/flight’;

const headers = new HttpHeaders().set('Accept', 'application/json');

const newFlight: Flight = {

id: o,

from: 'Gleisdorf’',

to: 'Graz',

date: new Date().toISOString()
)

this.http.post<Flight>(url, newFlight, { headers }).subscribe({
next: (flight) => {

15
16
17
18
19
20
21

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 23

console.debug('Neue Id: ', flight.id);
1

error: (err) => {

console.error('Error', err);

1),

Das Beispiel geht davon aus, dass der erzeugte Flug samt der serverseitig vergebenen ID wieder
zuriickgeliefert wird.

Falls Sie diese Methode ausprobieren mochten, konnen Sie sie im Konstruktor der Komponente
aufrufen (this.createDemoFlight()).

Templates und die Datenbindung

Nachdem wir nun die Logik unserer Komponente in der Klasse FlightSearchComponent ver-
staut haben, konnen wir uns ihrem Template zuwenden. Es handelt sich dabei um die Datei
flight-search.component.html.

Auf den ersten Blick handelt es sich hier um eine normale HTML-Datei. Neben HTML-Elementen
kann sie jedoch auch sogenannteDatenbindungsausdriicke beinhalten. Damit gleicht Angular den
Zustand der Komponente mit dem Zustand des Templates ab. Angular schreibt dazu beispielsweise
Daten aus der Komponente in das Template oder ibernimmt Eingaben in entsprechende Kompo-
nenteneigenschaften.

Eine erste Art von Datenbindungsausdruck haben Sie in Kapitel 1 im Rahmen der AppComponent
bereits kennengelernt: Der Ausdruck

<h1>{{title}}</h1>

hat dort den Inhalt der Eigenschaft title ausgegeben.

Hier wollen wir nun auf weitere Arten der Datenbindung eingehen.
Two-Way-Binding

Beim Einsatz von Formularen gilt es haufig, Eigenschaften aus der Komponente mit Eingabefeldern
in der Anwendung abzugleichen: Die Werte der Eigenschaften sind also in Formularfelder zu iiber-
nehmen. Andert der Anwender diese Felder, sind die neuen Werte in die jeweiligen Eigenschaften
zurlickzuschreiben. Diese Aufgabe ibernimmt Angular mit sogenannten Two-Way-Bindings.

Wenn Sie mit einem Two-Way-Binding beispielsweise die Eigenschaft from aus unserer
FlightSearchComponent an ein Eingabefeld binden wollen, miissen Sie in Angular folgende
Schreibweise nutzen:

© 00 N O O b W N =

NN N S 8 R 1 N b b vy
N »~ © © 0 1 O O b W N =~ o

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 24

<input [(ngModel)]="from" name="from">

Kommt input innerhalb eines form-Elements zum Einsatz, muss es auch ein name-Attribut
aufweisen. Angular nutzt diesen Wert zum Aufbau interner Datenstrukturen.

Damit Sie auf den ersten Blick erkennen, dass es sich hier um ein Two-Way-Binding handelt, nutzt
Angular eckige Klammern in Kombination mit runden. Die Community nennt diese Schreibkonven-
tion auch Banana-in-a-Box. Zugegeben, dieser Einsatz von Sonderzeichen wirkt zunachst ein wenig
seltsam. Allerdings hat sich das Angular-Team ganz bewusst fiir diese Schreibweise entschieden,
um die Art der Datenbindung offensichtlich zu machen.

Bei ngModel handelt es sich um eine sogenannte Direktive. Direktiven sind von Angular bereitge-
stellte DOM-Erweiterungen, die Verhalten zur Seite hinzufiigen. Im Fall von ngModel besteht dieses
Verhalten im gewiinschten Abgleich mit der angegebenen Eigenschaft. Gewissermafien ist ngModel
ein Experte fiir Eingabefelder: Es weif3, wie es die verschiedenen Eingabefelder — darunter Textfelder,
Checkboxen, Radioboxen und Drop-down-Felder — mit den angegebenen Eigenschaften abgleichen
kann.

Damit ngModel zur Verfiigung steht, muss das FormsModule in unser AppModule importiert werden:

// src/app/app.module.ts

// Diese Zeile einfligen:

import { FormsModule } from '@angular/forms';

@NgModule({

imports: [
// Diesen Eintrag hinzufligen:
FormsModule,
[...]

1,

declarations: |
[...]

1,

providers: [],
bootstrap: [
AppComponent

1)
export class AppModule { }

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 25

Two-Way-Data-Binding funktioniert nur mit ausgewahlten Eigenschaften. Unter diesen
ist ngModel die einzige, die Angular ab Werk zur Verfiigung steht. Sie kénnen jedoch
eigene Eigenschaften, die Two-Way-Data-Binding unterstiitzen, entwickeln. Details dazu
finden Sie im nachsten Kapitel.

Property-Bindings

Ahnlich wie Two-Way-Bindings tibernehmen Property-Bindings Eigenschaften aus der Komponen-
te in das Markup. Auch nach dem Aktualisieren der Eigenschaften in der Komponente aktualisiert
diese Binding-Art die Ausgabe. Allerdings schreibt sie Anderungen des Benutzers nicht mehr in die
Komponente zuriick. Deswegen konnte man hier auch von One-Way-Bindings sprechen.

Um solch ein Binding einzurichten, nutzen Sie eckige Klammern:
<button [disabled]="!from || !to">Search</button>

Das hier betrachtete Beispiel bindet den Ausdruck ! from || !to an die DOM-Eigenschaft disabled.
Der Ausdruck priift, ob mindestens eine der beiden Eigenschaften leer ist. Das Beispiel deaktiviert
somit die Schaltflache, wenn keine Werte fiir diese Eigenschaften vorliegen.

Das Beispiel zeigt auch, dass Angular sich an standardmaflig vorherrschende DOM-Eigenschaften
binden kann. Genau genommen, ist es aus Sicht von Angular egal, warum eine DOM-Eigenschaft
existiert. Sowohl Standardeigenschaften als auch eigene Eigenschaften wie ngModel im letzten
Abschnitt sowie DOM-Erweiterungen von anderen Bibliotheken lassen sich zusammen mit der
Datenbindung nutzen.

Eine weitere Schreibweise fiir One-Way-Bindings sieht den bereits diskutierten Einsatz geschweifter
Klammern vor:

<div>Es wurden {{ selectedFlight.length }} Flige gefunden</div>

Damit platziert Angular eine Eigenschaft bzw. einen darauf basierenden Ausdruck mitten in der
Seite.

Direktiven

Wie bereits erwéhnt, fiigen Direktiven der Seite Verhalten hinzu. Dieses kann die Datenbindung
unterstiitzen. Ein Beispiel dafiir ist die Direktive ngFor, die eine Auflistung iteriert und pro Eintrag
ein Stick HTML rendert:

o N O O b W N =

o I O O b W N =

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 26

<table class="table table-striped">
<tr *ngFor="let flight of flights">
<td>{{flight.id}}</td>
<td>{{flight.from}}</tad>
<td>{{flight.to}}</td>
<td>{{flight.date}}</ta>
</tr>

</table>

Im hier betrachteten Fall durchlauft ngFor samtliche Fliige des Arrays f1ights aus der Komponente
des vorherigen Abschnitts. Pro Flug rendert sie eine Tabellenzeile. Bitte beachten Sie, dass in
Anlehnung an die for-of-Schleife in ECMAScript auch hier im Rahmen der Datenbindung das
Schliisselwort of zu verwenden ist.

Der vorangestellte Stern (*ngFor) gibt dariiber Auskunft, dass es sich beim Inhalt des aktuellen
Elements um ein sogenanntes Template handelt. Damit sind hier HTML-Fragmente gemeint, die
Angular zunéchst gar nicht rendert und bei Bedarf einmal oder mehrere Male in die Seite einfiigt.

<table class="table table-striped">
<tr *ngFor="let flight of flights"
[ngClass]="{ 'active': flight === selectedFlight }"»

</tr>
</table>

Somit erhélt die Tabellenzeile mit dem gerade ausgewéhlten Flug die Klasse active. Dieser Style
kann in der Datei flight-search.component.scss definiert werden:

.active {
background-color:darkorange

In diesem Fall gilt der Style nur fiir die FlightSearchComponent. Um ihn global zur Verfiigung zu
stellen, ist er in die Datei src/styles.scss einzutragen.

Pipes

Ahnlich wie Direktiven unterstiitzen auch Pipes die Datenbindung. Sie sind in der Lage, Werte
beim Binden zu verdndern, und lassen sich somit unter anderem fur das Formatieren von Werten
nutzen. Zur Demonstration nutzt das folgende Beispiel die von Angular angebotene Pipe date zum
Formatieren des Datums:

=~ O U b W N

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 27

<td>{{flight.date | date:'dd.MM.yyyy HH:mm'}}</td>

Eine weitere standardméflig vorhandene Pipe, die vor allem Entwicklern hilft, ist die Pipe json. Sie
wandelt das gesamte Objekt in seine JSON-Reprasentation um. Somit konnen Entwickler Objekte
zum Testen ausgeben, ohne dafiir eine Komponente oder Markup schreiben zu miissen:

Basket
<pre>{{ selectedFlight | json }}</pre>

Event-Bindings

Runde Klammern fiithren zu einer Bindung an Events. Dabei kann es sich sowohl um DOM-Events
als auch um Erweiterungen von Frameworks wie Angular handeln. Das hier betrachtete Beispiel
nutzt zwei Event-Bindings, um auf Mausklicks zu reagieren. Das eine Event-Binding verkniipft die
Schaltflache Search mit der Komponentenmethode search:

<button (click)="search()" [disabled]="!from || !to">
Search
</button>

Das andere Event-Binding ruft fiir einen der dargestellten Fliige die Methode select auf, um ihn als
ausgewdahlten Flug vorzumerken:

<table class="table table-striped">
<tr *ngFor="let flight of flights"
[ngClass]="{ 'active': flight === selectedFlight }"»
[..]
<td><a (click)="select(flight)">Select</td>
</tr>
</table>

Verwenden Sie das folgende Styling in der Datei src/styles.scss, damit der Browser
auch fiir Anchor-Tags ohne href-Attribut den typischen Mauscursor fiir klickbare Links
(Zeigefingersymbol) anzeigt: a { cursor: pointer; }

Das gesamte Template Template

Der Vollstandigkeit halber platzieren wir hier nochmal das gesamte Template fiir die
FlightSearchComponent, das wir in den vorangegangenen Abschnitten besprochen haben:

© 00 =N O O & W N =~

W W W W W N DN N DD DN DD DNDNDNDNDN - 2~ s s
B W N PO © 0 N0 0k WON P20 0O N0 0k N =~

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 28

<!-- src/app/flight-search/flight-search.component.html

<h1>Flight Search</h1>

<div class="form-group">

<label>From:</label>

<input [(ngModel)]="from" class="form-control">
</div>
<div class="form-group">

<label>To:</label>

<input [(ngModel)]="to" class="form-control">
</div>

<div class="form-group">

>

<button class="btn btn-default" (click)="search()" [disabled]="!from || !'to">
Search
</button>
</div>
<table class="table table-striped">
<tr *ngFor="let flight of flights"
[ngClass]="{ 'active': flight === selectedFlight }"»

<td>{{flight.id}}</td>
<td>{{flight.from}}</td>
<td>{{flight.to}}</td>

<td>{{flight.date | date:'dd.MM.yyyy HH:mm'}}</td>

<td><a (click)="select(flight)">Select</td>
</tr>

</table>

Basket
<pre>{{ selectedFlight | json }}</pre>

Dabei fillt auf, dass die verwendeten Sonderzeichen, die bei ersten Schritten mit Angular durchaus
gewohnungsbediirftig sind, uns beim Erkennen der gewéhlten Datenbindungsart unterstiitzen und

das Template somit nachvollziehbarer gestalten.

© 0O N O O b W N =

NN N NN N P R s sy s
O O b WO N O O 0N O U bk Ww N~ O

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 29

Komponenten einbinden

Nachdem wir nun eine erste eigene Komponente geschaffen haben, miissen wir sie nur noch in
unsere Anwendung einbinden. Damit die Angular-Anwendung unsere Komponente iiberhaupt
beriicksichtigen kann, muss sie in einem Angular-Modul deklariert werden. In unserem Fall handelt
es sich dabei um das AppModule.

Diese Aufgabe sollte die CLI beim Generieren der Komponente schon itbernommen haben. Aber
zur Sicherheit lohnt es sich, das zu tberpriifen. Offnen Sie dazu die Datei app.module.ts und
vergewissern Sie sich, dass die FlightSearchComponent unter declarations eingetragen ist:

// src/app/app.module.ts

[...]
import { AppComponent } from './app.component';

[...]

@NgModule({

imports: [
FormsModule,
HttpClientModule,
BrowserModule

1,

declarations: |
AppComponent,
SidebarComponent,

NavbarComponent,

// Unsere Komponente:
FlightSearchComponent
1,

providers: [],
bootstrap: |
AppComponent

})
export class AppModule { }

Danach kénnen wir die Komponente im Template der AppComponent aufrufen:

O© 00 I O O b W N =

T N S N S o S = S N N S
0 O 00 N O O b W N =~ O

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 30

<div class="wrapper">
<div class="sidebar" data-color="white" data-active-color="danger">
<app-sidebar-cmp></app-sidebar-cmp>

</div>

<div class="main-panel">

<app-nhavbar-cmp></app-navbar-cmp>
<div class="content">

<l-- Alt: -->
<I-- <hi>{{title}}</h1> -->

<I-- Diese Zeile einfligen: -->
<app-flight-search></app-flight-search>

</div>
</div>

</div>

Anwendung starten

Gratulation! Sie haben Ihre erste Angular-Anwendung geschrieben, und es ist nun an der Zeit, sie
auszufiihren.

Zum Starten Threr Anwendung nutzen Sie die Angular CLI im Projekthauptverzeichnis:
ng serve -o

Nach dem Start des Entwicklungswebservers steht die Anwendung unter http://localhost:4200 bereit:

http://localhost:4200

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff

Flight Search

From
Hamburg
To:

Craz

3 Hamburg

Graz 2612.202019:42 Select
4 Hamburg Graz 2612.2020 21:42 Select
5 Hamburg Graz 2712.2020 00:42 Select
Basket
{
"id": 4,
"from”: "Hamburg”,
"to": "Graz",

"date": "2020-12-26T20:42:45.3194362+00:00",

"delayed”: false

31
) FlightApp x 4+ = 0 &
C @ http//localhost:4200 * B e :
0} rLGHTS 42 B o &

Thre erste Komponente

Fehler in der Entwicklerkonsole entdecken

Verhalt sich die Anwendung nicht wie gewtinscht, sollten Sie einen Blick auf die Konsole in den Ent-
wicklerwerkzeugen (F12 oder Strg+Umschalt+I) werfen. Hier finden Sie hiufig Fehlermeldungen:

1

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff

32

- O X
ﬂ FlightApp X +
C @ http//localhost:4200 Tt R e
-
Warenkorb
null
- -
[ﬂ Elements Memory Network Performance Console Sources Application Lighthouse Augury Redux Security 91 ¢ x
[® | top Y| © Fite All levels ¥ o3
[Hide network O Log XMLHttpRequests
[Preserve log Eager evaluation
(O Selected context only Autocomplete from history
Group similar Evaluate triggers user activation
LWU>] Live Reloading enabled. client:oZ ~
© »ERROR Error: Manfred braut einen Kaffee! core.js:5967
at FlightSearchComponent.search (flight-search.component.ts:53)
at FlightSearchComponent_Template_button_click_11_listener (flight-search.component.html:15)
at executelistenerWithErrorHandling (core.js:14981)
at ZoneTask.invokeTask [as invoke] (zone-evergreen.js:488)
>

Fehler in der Entwicklerkonsole

Der gezeigte Fehler wurde zur Veranschaulichung mit der Anweisung
throw new Error('Manfred braucht einen Kaffee!');

am Anfang der Methode search provoziert. In der Regel ist das jedoch nicht notwendig: Anwendun-
gen weisen haufig auch ohne weiteres Zutun Bugs auf ;-).

Bitte beachten Sie die Hyperlinks, die Angular im Rahmen der Fehlermeldung ausgibt. Diese
fithren zu Zeilen in den betroffenen HTML-und TypeScript-Dateien, die beim Auftreten des Fehlers
durchlaufen wurden.

Bonus: Die Anwendung im Browser debuggen

In Fallen, in denen Sie die Ursache des Fehlers nicht finden, konnen Sie auch den in den Browser
integrierten JavaScript-Debugger einsetzen. Die Voraussetzung dafiir ist, dass die CLI Metadaten
fiir den Debugger — sogenannte Source-Maps — generiert hat. Beim Einsatz von ng serve ist das
standardmafig der Fall.

Bei Chrome finden Sie den Debugger in den Entwicklerwerkzeugen auf dem Registerblatt Sources:

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 33

0 Flightapp x +

C @ http://localhost:4200 Tt R e

Paused in debugger IF A%

= ﬂ Elements Memory Network Performance Console Application Lighthouse Augury Redux Security & X
Page Filesystem H bootstrap app.component.ts flight-search.component.ts X main.ts catchErrorjs » P iy ¥ T 5
P
O top - 53 // throw new Error('Manfred braut einen Kaffee!'); “ @ Paused on breakpoint -
¥ O localhost4200 55 const url = "http://www.angular.at/api/flight’; url = "http://wwu.angular.at/api/t » watch
» | assets/paper-design
. e 57 const headers = new HttpHeaders() headers = HttpHeaders {normalizedNames: Map(@), ¥ Call Stack
el 58 .set('Accept’, 'annlication/json'); » h
[mainjs "Hamburg" Se?‘r(m h tis:64
[polyfillsjs 60 const params = new m. _prarams() params = HttpParams {updates: Array(2), cloneFrom: . ght-search.component.tse
o 61 .set('from’, [this.fron) FlightSearchComponent_Templ...
| runtimejs 62 .set('to’, this.te); flight-search.c...ponent.html:15
I stylesjs executelistenerWithErrorHandli...
[vendorjs | 64] .lthis.http.Dget(Flight[])(ur‘l, {headers, params}).Dsubscribe({ core,js:14981
) 65 next: (flights) => { -
. .\ Aflight-search.compone; 66 this.flights = flights; wrapListenerin_markDirtyAndPr...
SiiEsas 67 T, corejs:15016
= n:(cleo—iconswcffz o error: (ern) = (anonymous)
. 69 console.debug('Errer’, err); platform-browser js:582
» S Augury 7e } .
Yay: (e 71 1) - invokeTask
B TR 72 ¢ » zone-evergreen.js:399
b(':;fonts.gstatic.(cm - - o
q » {} Line64, Column5 (source mapped from main.js) Coverage: n/a oninvokeTask corejs:28269 -

JavaScript-Debugger in Chrome

Hier kénnen Sie Ihre Programmdateien 6ffnen und durch einen Klick auf eine Zeilennummer auf
der linken Seite einen Break Point definieren. Zum Offnen Threr Programmdateien empfiehlt sich die
Tastenkombination Strg+Umschalt+P. Diese 6ffnet einen Dialog, mit dem Sie nach der gewiinschten
Datei suchen konnen. Geben Sie dazu einfach die ersten Buchstaben des Dateinamens ein.

Gelangt die Programmausfithrung zur Zeile mit dem Break Point, wird die Anwendung angehalten.
Danach konnen Sie mit den Schaltflachen links oben die Ausfithrung Schritt fiir Schritt fortsetzen
und z. B. die aktuellen Werte Ihrer Variablen und Eigenschaften einsehen.

Bonus: Debuggen mit Visual Studio Code

Etwas komfortabler l4sst sich der in Chrome integrierte Debugger iiber Visual Studio Code bedienen.
Damit das moglich ist, miissen Sie das Visual-Studio-Code-Plug-in Debugger for Chrome installiert
haben.

Zum Starten des Debuggers via Visual Studio Code benétigen Sie die Datei . vscode/launch.json. Falls
sie noch nicht existiert, konnen Sie sie mit den folgenden Schritten einrichten:

1. Offnen Sie eine beliebige . ts-Datei.

2. Wihlen Sie in Visual Studio Code den Befehl Run/Start Debugging oder driicken Sie F5.

3. Falls Visual Studio Code Sie nach einer Umgebung (Environment) fiir das Debugging fragt,
wahlen Sie Chrome aus.

4. Visual Studio Code generiert nun eine Datei launch. json und zeigt diese an.

5. Korrigieren Sie in der Datei launch. json die angezeigte URL auf http://localhost:4200:

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 34

1|

2 "version": "0.2.0",

3 "configurations": [

4 {

5 "type": "chrome",

6 "request": "launch",

7 "name": "Launch Chrome against localhost",
8 "url": "http://localhost:4200",
9 "webRoot": "${workspaceFolder}"
10 }

11]

12}

Wenn alle Stricke reiflen, konnen Sie diese Datei auch manuell anlegen.

Um den Debugger nun via Visual Studio Code zu nutzen, sind die folgenden Schritte notwendig:

1. Starten Sie Ihre Anwendung wie gewohnt mit ng serve.
2. Erzeugen Sie direkt in Visual Studio Code durch einen Klick links neben eine Zeilennummer

einen Break Point:

File Edit Selection View Go

EXPLORER

> OPEN EDITORS
~ FLIGHT-APP
v [.vscode
launch json
settings,json
> I dist
> B e2e
> I node_modules
~ [@F src
v B app
> Il bak
~ [flight-search

~ [navbar

> OUTLINE

> TIMELINE

> NPM SCRIPTS

I 03-Erste-Schritte-mit-Angular* &

Run

B flight-search.compon...
& flight-search.compon...
A flight-search.compon...
B flight-search.compon...

B navbar.component.ht...

Terminal Help

¥ flight-search.component.ts X

src > app > flight-search > B flight-search.component.ts > % FlightSearchCompone

— py—

B —

By

flight-search.component.s - flight-app - Visual Studio ... =~ — O X

w O

ey

t?@

54
55 const headers = new HttpHeaders()
u 56 .set("Accept', 'application/json');
57
58 const params = new HttpParams()
59 .set('from', this.from)
60 .set('to', this.to);
61
® 62 this.http.get<Flight[]>(url, {headers,
63 next: (flights) => {
64 this.flights = flights;
65 1,
. 66 error: (err) => {
67 console.debug('Error’, err);
I
U
U PROBLEMS QUTPUT Tasks ~
I
M

®O0A0 g Launch Chrome against localhost (flight-app) £ Live Share

Break Point in Visual Studio Code (Zeile 62)

params}).subs

i
m
>
X

& #1857a4 &/ 0

Thr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 35

3. Wihlen Sie den Befehl Run/Start Debugging oder driicken Sie F5.

4. Nun o6ffnet sich Chrome.

5. Sobald der Programmfluss auf den Break Point stof3t, halt der Debugger die Anwendung an.

6. Sie konnen den Debugger jetzt direkt aus Visual Studio Code heraus steuern, die Ausfithrung
Schritt fur Schritt fortsetzen und die Werte von Variablen bzw. Eigenschaften einsehen.

File Edit Selection View Go Run Terminal Help flight-search.component.ts - flight-app - Visual Studio ... =~ — O X

EXPLORER O flight-search.component.ts % # [» 7 ¥ ¥ 2 E T @
> OPEN EDITORS src > app > flight-search > @ flight-search.component.ts > %3 FlightSearchComponent > @
51 searcn(): void f e

~ FLIGHT-APP

52
~ & vscode 53 const url = 'http://www.angular.at/api/flight';
launchjson U 54
settings.json 55 const headers = new HttpHeaders()
> I dist 56 .set('Accept', 'application/json');
> B e2e 57 RN
- amburg
5> B node_modules 58 const params nev.u Htt |
59 .set('from', this.from)
~ @ src e .
6@ .set('to', this.to); —
v BB app 61
> I bak o 62 this.http.® get<Flight[]>(url, {headers, params}).® s
~ [flight-search 63 next: (flights) => {
B flight-search.compon... U 64 this.flights = flights;
& flight-search.compon... U 63 1
. 66 error: (err) => {
A flight-search.compon... U = &
. PROBLEMS OUTPUT ~ == ~ X
B flight-search.compon... U ’ Tasks
~ [navbar
B navbar.componentht... M
> OUTLINE
> TIMELINE
> NPM SCRIPTS
I° 03-Erste-Schritte-mit-Angular* @ ®0A 0 &> Launch Chrome against localhost (flight-app) £ Live Share & #1857a4 A Q

Debuggen mit Visual Studio Code

Zusammenfassung

Angular-Anwendungen bestehen aus Komponenten. Hierbei handelt es sich um Klassen, die Infor-
mationen iiber Eigenschaften sowie das gewiinschte Verhalten iiber Methoden anbieten. Dazugeho-
rige Templates definieren, wie Angular die Komponenten darstellt. Mit Datenbindungsausdriicken
stellen sie die Eigenschaften dar und verkniipfen Methoden mit UI-Ereignissen.

Wiederverwendbare
Sub-Komponenten und Services

In diesem Kapitel wollen wir unsere Losung mit Boardmittel von Angular ein wenig verfeinern.
Dazu lagern wir wiederverwendbare Ul-Fragmente in eine Sub-Komponente und eine wiederver-
wendbare Logik in einen Service aus.

Sub-Komponenten mit Event- und Property-Bindings

Jede Angular-Komponente kann weitere Komponenten in ihrem Template aufrufen. Zur Kommu-
nikation kommen dazu die aus dem letzten Kapitel bekannten Property- und Event-Bindings zum
Einsatz. Um dies zu veranschaulichen, kommt hier eine Sub-Komponente, die Fliige in Form von
Karten prasentiert zum Einsatz:

£ Flightapp x + = O X
C © http://localhost:4200 T e :
Y FLIGHTS 42 o0 @

Flight Search

From:
Hamburg
To:

Craz

Hamburg - Hamburg - Hamburg -
Graz Graz Graz

Flight-No. #3 Flight-No.: #4 Flight-No.: #5

Date: 26.12.2020 19:42 Date: 26.12.2020 21:42 Date: 27122020 00:42

Die FlightCardComponent

© 00 N O O b W N =

T S =N
O O = W N =~ O

Wiederverwendbare Sub-Komponenten und Services 37

Solche Karten sind derzeit sehr iiblich, zumal sie ein flexibles (responsive) Design erlauben: Steht am
Endgerat viel Platz zur Verfiigung, kann eine Anwendung mehrere Karten nebeneinander anzeigen.
Steht wenig Platz zur Verfiigung, zeigt die Anwendung die Karten untereinander an.

Vorbereitungen

Jede Karte kann ausgewahlt werden. Wurde sie ausgewahlt, erhélt sie einen beigen Hintergrund,
ansonsten einen weiflen. Auflerdem sollen alle ausgewahlten Fliige im Warenkorb présentiert
werden. Dazu wird der Warenkorb auf ein Objekt abgedndert, das die IDs der Fliige auf einen
boolean abbildet:

[...]

export class FlightSearchComponent implements OnlInit {

from = 'Hamburg';

to = 'Graz';

flights: Array<Flight> = [];
selectedFlight: Flight | null = null;

basket: { [key: number]: boolean } = {
3: true,
5: true

};

Im gezeigten Beispiel befinden sich von Anfang an die Fliige 3 und 5 im Warenkorb. Das soll das
Ausprobieren unserer Anwendung ein wenig vereinfachen.

Der Datentyp von basket verdient unsere Aufmerksamkeit: { [key: number]: boolean } bedeutet,
dass es sich hierbei um ein Objekt handelt, das Schliissel vom Typ number auf Werte vom Typ boolean
abbildet. Das Objekt wird also als Dictionary verwendet.

Falls Thnen die hier verwendete Schreibweise zu uniibersichtlich ist, konnen Sie auch in
einem vorgelagerten Schritt einen Typ fiir das Dictionary definieren und dann basket
damit typisieren:

type NumberBooleanDict = { [key: number]: boolean };

Wiederverwendbare Sub-Komponenten und Services 38

5 export class FlightSearchComponent implements OnInit {
6 [...]

7 basket: NumberBooleanDict = {

8 3: true,

9 5: true

10 }

11 [...]

12 }

Um festzustellen, ob sich ein Flug im Warenkorb befindet, muss die Anwendung also nur priifen, ob
der Basket an der Stelle der Flugld truthy ist:

const inBasket = this.basket[7]; // 7 ist eine Flugld.

Zur Visualisierung des Warenkorbs kommt aus Griinden der Vereinfachung abermals die JSON-Pipe
zum Einsatz:

{{ basket | json }}

Das Ganze gestaltet sich dann, wie nachfolgend gezeigt:

Basket
{

"3": true,
"5": true
Ausgabe des Warenkorbs

Eine Komponente mit Property-Bindings Property-Binding

Die hier besprochene Karte, deren Implementierung im néachsten Abschnitt folgt, soll iiber Property-
Bindings zwei Informationen vom Parent iibergeben bekommen: den anzuzeigenden Flug und
die Information, ob sie ausgewahlt wurde. Fiir die erste Information weist die Komponente eine
Eigenschaft item und fiir zweite Information eine Eigenschaft selected auf:

Bw N

Wiederverwendbare Sub-Komponenten und Services 39

<div *ngFor="let f of flights">
<app-flight-card [item]="f" [selected]="basket[f.id]">
</app-flight-card>

</div>

Um alle gefundenen Fliige auszugeben, iteriert das betrachtete Beispiel iiber die Auflistung flights
und gibt pro Eintrag eine Karte aus.

So konnen Sie sich das Einbinden einer Komponente wie den Aufruf einer Funktion vorstellen,
die Parameter tibergeben bekommt und ein Stiick UI rendert. Eine andere Metapher fiir eine
Komponente ist ein elektronisches Bauteil, z. B. ein Chip: Er ist tiber Eingdnge mit der Auflenwelt
verdrahtet und bekommt auf diese Weise die nétigen Informationen:

basket[flug.id]

selected s

item B

flight

Die Komponente flight-card nimmt Informationen iiber Eigenschaften entgegen.

Im hier betrachteten Fall nimmt der Eingang item den jeweiligen Flug entgegen, und der Eingang
selected bekommt den entsprechenden boolean aus dem Warenkorb.

Implementierung der Komponente mit Property-Bindings
Unsere Komponente wird wieder mit der Angular CLI generiert:
ng g ¢ flight-card

Alternativ dazu lasst sich, wie im letzten Kapitel gezeigt, das Visual-Studio-Plug-in Angular
Schematics dafiir nutzen. Es richtet fiir diese Aufgabe im Kontextmenii der einzelnen Ordner einen
Befehl Angular: Generate a component ein.

Die Implementierung unserer flight-card besteht zundchst mal aus einer Klasse mit einem
Component-Dekorator:

O© 00 I O O b W N =

NN N N N R R b s sy
B W0 N PO O 0N 0 O bk ON A~ O

Wiederverwendbare Sub-Komponenten und Services 40

// src/app/flight-card/flight-card.component.ts

import { Component, Input } from '@angular/core';
import { Flight } from '../flight';

@Component ({
selector: 'app-flight-card',
templateUrl: './flight-card.component.html',
styleUrls: ['./flight-card.component.scss']

P
export class FlightCardComponent {

@Input() item: Flight | null = null;
@Input() selected = false;

select() {
this.selected = true;

deselect() {
this.selected = false;

Der Dekorator erhdlt einen Selektor sowie einen Verweis auf ein Template. Den von der CLI
generierten Konstruktor sowie die Implementierung von OnInit haben wir entfernt, da sie hier nicht
benotigt werden.

Bis hierhin bietet diese Implementierung nichts Neues. Neu ist allerdings der Input-Dekorator. Er
dekoriert samtliche Eigenschaften, die die Komponente von ihrem Parent entgegennimmt.

Auflerdem weist sie zwei Methoden auf, die ihr Template aufruft: select wahlt die Karte aus, und
deselect hebt diese Auswahl wieder auf.

Das Template dieser Komponente priift zunachst, ob die Karte selektiert wurde. Ist dem so, erhalt
die Karte per ngClass eine entsprechende Formatierung:

O© 00 I O O b W N =

NN N N S R R N N by s s
W N PO O 0O N0 O kW N

Wiederverwendbare Sub-Komponenten und Services 41

<!-- src/app/flight-card/flight-card.component.html -->
<div class="card" [ngClass]="{ 'active-card' : selected }"»

<div class="card-header">
<h2 class="title">{{item?.from}} - {{item?.to}}</h2>
</div>

<div class="card-body">
<p>Flight-No.: #{{item?.id}}</p>
<p>Date: {{item?.date | date:'dd.MM.yyyy HH:mm'}}</p>
<p>
<button class="btn btn-default"
*nglf="!selected"
(click)="select()">Select</button>

<button class="btn btn-default"
*nglf="selected"
(click)="deselect()">Remove</button>
</p>
</div>

</div>

Das Template gibt danach ein paar Daten des aktuellen Flugs aus. Bitte beachten Sie die Nutzung
des Safe-Navigation-Operators (Fragezeichen): Statt item.id kommt hier zum Beispiel item?.id
zum Einsatz. Das ist notwendig, weil die Eigenschaft item initial null ist und null.id im Strict
Mode nicht erlaubt ist. Stattdessen veranlasst der Safe-Navigation-Operator Angular, die Navigation
abzubrechen und null zuriickzuliefern.

Das Styling fiir die Klasse active-card kann wieder lokal in die Datei flight-card.component.scss
oder global in die Datei styles.scss eingetragen werden:

.active-card {
background-color: rgb(204, 197, 185);

}

Diese Farbe wurde so gewahlt, dass sie zum verwendeten Theming passt. Die anderen hier
verwendeten Klassen werden von der eingebundenen Styling-Bibliothek Bootstrap definiert.

Komponente registrieren und aufrufen

Auch diese Komponente muss bei einem Angular-Modul registriert werden. In unserem Fall handelt
es sich um das AppModule. Normalerweise kiimmert sich die CLI automatisch darum. Zur Sicherheit
empfiehlt es sich jedoch, diesen Umstand zu priifen:

O© 00 I O O b W N =

= =y
© 00 N O O b W N =~ O

W N -

Wiederverwendbare Sub-Komponenten und Services 42

// src/app/app.module.ts

[...]
import { FlightCardComponent } from './flight-card/flight-card.component';

@NgModule({

imports: [
[...]

1,

declarations: |
[...]
FlightCardComponent

1,

providers: [],

bootstrap: [
AppComponent

1)
export class AppModule { }

Danach erhalt das gesamte Modul Zugriff auf die Komponente und lasst sich zur Préasentation
gefundener Fliige in der F1ightSearchComponent verwenden:

<div *ngFor="let f of flights">
<app-flight-card [item]="f" [selected]="basket[f.id]">
</app-flight-card>

</div>

Wie besprochen, erhélt diese Komponente den aktuellen Flug und den Boolean aus dem Warenkorb.
Die Anwendung sollte nun die gefundenen Fliige als Karten prasentieren.

Die Karten lassen sich auch tber die prasentierten Schaltflachen aus- und abwahlen. Ein kleines
Problem fallt dabei allerdings auf: Angular aktualisiert die Eigenschaft basket und somit den
prasentierten Warenkorb am Ende der Seite nicht. Hierzu miisste die F1ightCardComponent ihren
Parent, der den Warenkorb verwaltet, mit einem Ereignis benachrichtigen. Wie das geht, erlautert
der nachste Abschnitt.

Bonus: Responsive Design mit dem Bootstrap Grid Layout

Falls Sie dieses Beispiel nachstellen, fallt Thnen gegebenenfalls auf, dass die einzelnen Karten sehr
viel Platz benétigen:

Wiederverwendbare Sub-Komponenten und Services 43

) FlightApp X 4+ a = X
C @® http://localhost:4200 * B @ H
Y FLIGHTS 42 From:

Hamburg

To:

Hamburg - Graz

Flight-No. #3

Date: 26.12.2020 19:42

Hamburg - Graz

Flight-No. #4

Date: 26.12.2020 21:42

Um mehrere Karten nebeneinander zu préasentieren, kann man zum Spaltenlayout von Bootstrap
Bootstrap greifen. Es ist fiir responsive Designs gedacht — also fiir Designs, die sich an unter-
schiedliche Auflosungen anpassen. Dazu unterteilt es eine Seite in zwolf gedachte Spalten, und die
Anwendung weist jedem Element eine bestimmte Anzahl an Spalten zu. Dabei kann es zwischen
sehr kleinen (extra small, xs), kleinen (small, sm), mittleren (medium, md), grofien (large, 1g) und
sehr groflen (extra large, x1) Bildschirmen unterscheiden. Beispiele fiir diese Grofieneinheiten sind
Handys (xs), Tablets (sm und md) sowie Laptops und Desktopgerite (1g und x1). Hierbei handelt es
sich jedoch nur um Naherungen, denn schlussendlich kommt es auf die zur Verfiigung stehende
Auflésung an.

Beispielsweise konnte man nun angeben, dass eine Karte bei sehr kleinen Geréten (xs) alle zwolf
Spalten erhalt, bei kleinen (sm) sechs, bei mittleren (md) sowie bei groflen (1g) vier und bei sehr
grofien (1g und x1) drei der insgesamt zwolf Spalten. Somit werden je nach Auflosung eine bis vier
Karten nebeneinander prasentiert. Hierzu sieht Bootstrap die nachfolgend verwendeten Klassen vor:

=~ O O b W N =

Wiederverwendbare Sub-Komponenten und Services 44

<div class="row">
<div *ngFor="let f of flights"
class="col-xs-12 col-sm-6 col-md-4 col-1g-4 col-x1-3">
<app-flight-card [item]="f" [selected]="basket[f.id]">
</app-flight-card>
</div>
</div>

Jede dieser Klassen, die mit dem Prafix col- eingeleitet werden, gibt fiir eine Auflosung die
gewlnschte Spaltenanzahl an. Beispielsweise bedeutet col-md-4, dass eine Karte bei einem mittleren
Gerit vier der zwolf Spalten erhalt.

Auflerdem sind die einzelnen Spalten in einen Container, z. B. ein div, mit der Klasse row zu
platzieren. Sie kiimmert sich darum, dass bei Bedarf eine neue Zeile mit Flugkarten begonnen wird.

Das Ergebnis dieses Vorgehens sieht bei einem Bildschirm mit der Auflosung 1g wie folgt aus:

) FlightApp X + - g &
C @ hitp//localhost:4200 T R e :
Y FLGHTS 42 B o @

Flight Search

From:
Hamburg
To:

Craz

Hamburg - Hamburg - Hamburg -
Graz Graz Graz

Flight-No.: #3 Flight-No. #4 Flight-No.: #5

Date: 26.12.2020 19:42 Date: 26.12.2020 21:42 Date: 27.12.2020 00:42

Komponenten mit Event-Bindings Event-Binding

Dieser Abschnitt erweitert die hier gezeigte F1ightCardComponent um ein Ereignis selectedChange.
Dieses Ereignis soll den Parent informieren, wenn die Karte aus- bzw. abgewahlt wird:

Wiederverwendbare Sub-Komponenten und Services 45

<div *ngFor="let f of flights">
<app-flight-card [item]="f"
[selected]="basket[f.id]"
(selectedChange)="basket[f.id] = $event">
</app-flight-card>
</div>

Das Event selectedChange werden wir gleich einfithren. Warten Sie bis dahin bitte mit dem hier
gezeigten Aufruf, um Kompilierungsfehler zu vermeiden.

Man konnte sich diese eine Komponente als Funktion vorstellen, die einen Callback selectedChange
tibergeben bekommt. Immer wenn sie aus- bzw. abgewéhlt wird, ruft sie diesen Callback auf.

Die Metapher mit dem Chip passt hier noch besser: Ein Chip hat Ein- und Ausgénge, iiber die er mit
seiner Umgebung verdrahtet wird. Die Ausgénge entsprechen den Events. Im hier betrachteten Fall
flieSt der Wert selected liber einen Ausgang zuriick in den Warenkorb:

basket[flight.id]

/ \

selected B 8 selectedChange

item B

flight
Komponente mit Eingingen (Properties) und einem Ausgang (Event)

Implementierung der Komponente mit Event-Binding

Fiir das Event erhélt die F1ightCardComponent eine Eigenschaft selectedChange, die Sie mit Output
dekorieren miissen:

O© 00 I O O b W N =

NN NN NN NN R R R R s s s
=4 0 O B WD S O O 0 N0 0B WD,

Wiederverwendbare Sub-Komponenten und Services

// src/app/flight-card/flight-card.component.ts

import { Component, Input, Output, EventEmitter } from '@angular/core';

import { Flight } from '../flight';

@Component ({
selector: 'app-flight-card',
templateUrl: './flight-card.component.html',
styleUrls: ['./flight-card.component.scss']

P
export class FlightCardComponent {

@Input() item: Flight | null = null;
@Input() selected = false;

@utput() selectedChange = new EventEmitter<boolean>();

select() {
this.selected = true;
this.selectedChange.emit(true);

deselect() {
this.selected = false;
this.selectedChange.emit(false);

Der Typ des Output ist per definitionem ein EventEmitter. Da es mehrere Typen mit diesem allge-
meinen Namen gibt, sollten Sie sich vergewissern, dass Sie den TypEventEmitter aus@angular/core
importieren. Gerade beim Einsatz von Auto-Imports schlagen Entwicklungsumgebungen wie Visual
Studio Code haufig den falschen Paketnamen vor.

Damit der EventEmitter den neuen Wert von selected verdffentlichen kann, wird er mit Boolean
typisiert.

Komponente aufrufen

Nach dieser Erweiterung kénnen Sie mit dem Aufruf der F1ightCardComponent einen Event-Handler
fiir selectedChange festlegen:

© 00 =N O O & W N =~

[=N
W N =~ O

Wiederverwendbare Sub-Komponenten und Services 47

<div class="row">
<div
*ngFor="1let f of flights"
class="col-xs-12 col-sm-6 col-md-4 col-1g-4 col-x1-3">

<app-flight-card
[item]="f"
[selected]="basket[f.id]"
(selectedChange)="basket[f.id] = $event">
</app-flight-card>

</div>
</div>

Die von Angular eingerichtete Variable $event beinhaltet den an emit iibergebenen Wert, also
true oder false. Die Anwendung sollte nun beim Aus- und Abwihlen einer Karte den Warenkorb
aktualisieren:

) FlightApp x + — O X
C @ htip://localhost:4200 T N @ :
) rLCHTS 42 From:
Hamburg
HOME To:
B Graz
Hamburg - Hamburg - Hamburg -
- Graz Graz Graz
Flight-No. #3 Flight-No. #4 Flight-No.: #5
Date: 2612.2020 19:42 Date: 2612.2020 21:42 Date: 2712.2020 00:42
=3
Basket
{
"3": false,
“4": true,
“5": true
}

Der Warenkorb wird nun aktualisiert.

© 00 N O O b W N =

=Y
N O

Wiederverwendbare Sub-Komponenten und Services 48

Komponenten mit Two-Way-Bindings

Wir haben eine gute Nachricht: Unsere Input/Output-Kombination von selected und
selectedChange erfiillt samtliche Konventionen fiir die verkiirzte Banana-in-a-Box-Schreibweise.
Das Event setzt sich aus dem Namen der Property sowie aus dem Suffix Change zusammen und
veroffentlicht den geanderten Wert via $event. Insofern spricht hier nichts gegen den Einsatz dieser
komfortablen Grammatik:

<div class="row">
<div
*ngFor="let f of flights"

class="col-xs-12 col-sm-6 col-md-4 col-1g-4 col-x1-3">

<app-flight-card
[item]="f"
[(selected)]|="basket[f.id]">
</app-flight-card>

</div>
</div>

Die Grammatik fiir Two-Way-Bindings ist tatsachlich nur eine Schreiberleichterung, die Angular in
Féllen, wo die diese Konventionen erfiillt sind, ermoglicht.

Wiederverwendbare Logik in Services auslagern

Bis jetzt haben wir samtliche Programmlogiken in Komponenten untergebracht. Mdchte man
jedoch dieselben Routinen in mehreren Komponenten nutzen, gilt es, sie an eine zentrale Stelle
auszulagern. Hierfiir bietet Angular das Konzept der Services an. Dabei handelt es sich haufig um
wiederverwendbare Klassen.

Dieser Abschnitt zeigt, wie Sie eigene Services schreiben und via Dependency Injection nutzen
konnen.

Ein erster Service

Unsere FlightSearchComponent kiimmert sich derzeit direkt um das Abrufen von Fligen via HTTP.
Allerdings ist es naheliegend, dass kiinftig auch weitere Komponenten die gleichen Serverzugriffe
bendtigen. Deswegen ist es tiblich, solche Aufgaben in eigene Services auszulagern.

Genau das wird auch unsere erste Aufgabe in diesem Kapitel sein. Ahnlich wie Komponenten lassen
sich Servicegenerieren generierenServices mit der Angular CLI generieren. Fithren Sie dazu den
folgenden Befehl im Hauptverzeichnis Ihres Projekts aus:

Wiederverwendbare Sub-Komponenten und Services 49
ng generate service flight

Die Anweisung zum Generieren eines Service lasst sich auch abkiirzen:

ng g s flight

Auflerdem konnen Sie Services tiber das Kontextmeni eines Ordners in Visual Studio Code erzeugen,
sofern Sie das Plug-in Angular Schematics installiert haben:

File Edit Selection View Go Run Terminal Help flight-app - Visual Studio Code — O X

EXPLORER
> OPEN EDITORS N il
ew File
~ FLIGHT-APP
v B vscode New Folder
launch.json Reveal in File Explorer Shift+Alt+R
settingsjson Open in Integrated Terminal
> B coverage Find in Folder... Shift+Alt+F
> I dist
> B ele Cut Ctrl+X
> P node_modules Copy Ctrl+C
v [src
>Ha
PP Copy Path Shift+ Alt+C
> t w
assets
> PM environments Copy Relative Path Ctrl+K Ctrl+Shift+C
favicon.ico Rename F2
B indexhtml Delete Delete
main.ts . _
polyfills.ts Angular: Generate a component rSchematics v | = 5 ~ X
& stylesscss Angular: Generate a service
i test.ts Angular: Generate a module
9
5 TIMTT o Angular: Generate another schematic
> TIMELINE Nx generate (ui)
> NPM SCRIPTS)
7 05-Servicess @ ®0AO Deploy to Function App... WESlint & 0Q

Dieser Befehl veranlasst die CLI, zwei Dateien zu generieren:

© 00 N O O & W N =

RN
= O

Wiederverwendbare Sub-Komponenten und Services 50

Bl Eingabeaufforderung g + = O X

>ng generate service flight
src/app/flight.service.spec.ts (357 bytes)

src/app/flight.service.ts (135 bytes)

Service mit der CLI generieren

Die generierte Datei flight.service.ts enthélt das Grundgeriist unseres neuen FlightService:

// src/app/flight.service.ts
import { Injectable } from '@angular/core';

@Injectable({
providedIn: 'root'

D)

export class FlightService {

constructor() { }

Die Konfiguration von Services nennt man auch ProviderProvider oder Serviceprovider. Wird der
Service wie hier iber Eigenschaften von Injectable konfiguriert, ist auch von Tree-Shakable Provi-
der die Rede. Der Name riihrt daher, dass solche Provider gut mit einer Optimierungstechnik namens
Tree-Shaking zusammenspielen. Diese Technik entfernt beim Kompilieren alle nicht bendtigten
Framework-Bestandteile und tragt somit zu kleineren Bundles bei. Die Angular CLI kiimmert sich
iibrigens automatisch um diese Aufgabe, wenn Sie Ihre Bundles mit ng build bauen lassen.

Beim gezeigten Beispiel handelt es sich lediglich um eine Klasse mit einem Injectable-Dekorator.
Aufgrund dieses Dekorators weify Angular, dass wir diese Klasse als Service nutzen wollen.

Die Eigenschaft providedIn gibt den Scope des Service an. Anders ausgedriickt: providedIn sagt uns,
wo in der Anwendung der Service zur Verfiigung steht. In der Regel werden Sie auf die folgenden
beiden Optionen stoflen:

« root (String): Der String root root gibt an, dass der F1ightService in der gesamten Anwendung
zur Verfiigung steht. Man spricht hierbei auch vom Root - Scope. Sie werden diese Option in den
meisten Féllen wahlen.

O© 00 I O O b W N =

NN NN NN N R R R Rl s
=4 0 O B WD A O O 0 N0 0B WD

Wiederverwendbare Sub-Komponenten und Services 51

« Verweis auf ein lazy Angular-Modul: Eine Anwendung kann angewiesen werden, ein
Angular-Modul erst bei Bedarf in den Browser zu laden. Hierbei ist von lazy loading die Rede.
Verweist providedIn auf so ein Modul, wird der Service gemeinsam mit diesem Modul geladen
und kann deswegen auch nur innerhalb dieses Moduls genutzt werden.

Es ergibt iibrigens keinen Sinn, providedIn auf ein Modul, das nicht per Lazy Loading
bezogen wird, verweisen zu lassen. Diese Module, die von Anfang an zur Verfiigung
stehen, teilen sich ndmlich den Root-Scope. Insofern hatte dieses Vorgehen denselben
Effekt wie providedIn: root.

Lassen Sie uns nun dem FlightService eine Methode find zum Suchen nach Fligen spendieren:

// src/app/flight.service.ts

import { HttpClient, HttpHeaders, HttpParams } from '@angular/common/http';
import { Injectable } from '@angular/core';

import { Observable } from 'rxjs';

import { Flight } from './flight';

@Injectable({
providedIn: 'root'

)
export class FlightService {

constructor(private http: HttpClient) { }

find(from: string, to: string): Observable<Flight[]> {
const url = 'http://demo.ANGULARarchitects.io/api/flight’';

const headers = new HttpHeaders()
.set('Accept', 'application/json');

const params = new HttpParams()
.set('from', from)

.set('to', to);

return this.http.get<Flight[]>(url, {headers, params});

Im Wesentlichen entspricht diese neue Methode dem Aufbau der Methode search, die wir in Kapitel
3 direkt in der F1ightSearchComponent platziert haben. Beachten Sie bitte die folgenden Punkte:

© 00 N O O & W N =

W oW WNNNDNDDNDDNDNDDNDN DN A R oy
N~ O 0N 0 O b WN A O W 10 U h Wwh»

Wiederverwendbare Sub-Komponenten und Services 52

« Der FlightService lasst sich den HttpClient injizieren. Services kénnen demnach auch
weitere Services via Dependency Injection anfordern.

« Die Methode find liefert das Ergebnis von this.http.get alsObservable<Flight> zuriick. Das
bedeutet, dass der Aufrufer von find bei diesem Observable die Methode subscribe aufrufen
muss, um die abgerufenen Fliige in Empfang zu nehmen.

Den Service konsumieren

Nun kénnen wir unseren FlightService in der F1lightSearchComponent nutzen:

// src/app/flight-search/flight-search.component.ts

import { Component, OnInit } from '@angular/core';
import { Flight } from '../flight';
import { FlightService } from '../flight.service';

@Component ({
selector: 'app-flight-search',
templateUrl: './flight-search.component.html',
styleUrls: ['./flight-search.component.scss']

)

export class FlightSearchComponent implements OnlInit {

from = 'Hamburg';

to = 'Graz';

flights: Array<Flight> = [];
selectedFlight: Flight | null = null;

basket: { [key: number]: boolean } = {
3: true,
5: true

b

constructor(private flightService: FlightService) {

}

ngOnInit(): void {
}

search(): void {

this.flightService. find(this. from, this.to).subscribe({

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Wiederverwendbare Sub-Komponenten und Services 53

next: (flights) => {
this.flights = flights;
1
error: (err) => {
console.debug('Error', err);
}
1)
}
select(f: Flight): void {
this.selectedFlight = f;
}
}

Die aktualisierte F1ightSearchComponent lasst sich den F1ightService in den Konstruktor injizieren.
Die Methode search verwendet diesen FlightService zum Abrufen von Fligen.

Der zuvor injizierte HttpClient wird nicht mehr benétigt. Deswegen wurde seine Verwendung aus
der FlightSearchComponent ersatzlos entfernt. Das betrifft auch die im letzten gezeigte Demome-
thode createDemoFlight, die zur Veranschaulichung einen neuen Flug erzeugt.

Gratulation! Sie haben Thren ersten Service mit wiederverwendbarer Logik geschrieben und in einer
Komponente verwendet.

Zusammenfassung

Angular bietet einige Building-Blocks zur Schaffung wiederverwendbarer Anwendungsteile: (Sub-
)Komponenten weisen wiederverwendbare UI-Fragmente auf und kommunizieren mit ihren Eltern-
Komponenten iiber Property- und Event-Bindings. Diese sind mit den Dekoratoren @Input und
@output zu kennzeichnen. Services kapseln hingegen wiederverwendbare Logiken und lassen sich
in andere Services und Komponenten injizieren.

Navigationsstrukturen schaffen: Der
Angular Router

Eine Single Page Application (SPA) besteht, wie der Name schon ausdriickt, aus nur einer Seite. Um
verschiedene Anwendungsfille anbieten zu konnen, missen wir verschiedene Seiten simulieren.

Das erfolgt durch das Ein- und Ausblenden von Komponenten. Der Angular-Router hilft bei dieser
Aufgabe.

Dieses Kapitel erganzt unser Beispiel, sodass es unter Nutzung des Angular-Routers mehrere An-
sichten présentiert. Diese sogenannten Routen lassen sich tiber einzelne Meniieintrage einblenden.

Uberblick

Wenn eine SPA mehrere Seiten simulieren soll, reicht es nicht, einfach nur Komponenten ein- und
auszublenden. Damit der Back-Button so funktioniert, muss sich der durchgefiithrte Zustandswech-
sel in der URL widerspiegeln. Dasselbe gilt fiir Bookmarks oder Links, die auf eine bestimmte Ansicht
der SPA verweisen. Gliicklicherweise automatisiert der Router auch diese Aufgabe, die man ebenfalls
als Deep Linking Deep Linking bezeichnet: Er spendiert jeder Route eine eigene URL.

Der Router, der im Lieferumfang von Angular enthalten ist, sieht vor, dass die SPA neben konkreten
Bereichen, wie Menis oder Fufizeilen, auch einen Platzhalter aufweist:

SPA —
FPlatzhalter

S—

SPA mit Platzhalter fiir das Routing

Um festzulegen, welche Komponente der Router in diesem Platzhalter positionieren soll, hangt der
Aufrufer einen zusétzlichen Pfad an die URL an. Dieser Pfad verweist auf einen Konfigurationsein-

Navigationsstrukturen schaffen: Der Angular Router 55

trag, der unter anderem die Komponente bekannt gibt. Man sagt auch, dass der Router die adressierte
Komponente aktiviert:

http://flights42.xy/flight-search

SPA —

FlightSearch
Component

S—

Aktivieren von Komponenten mit dem Angular-Router

Hier wurde an die URL der SPA der Pfad /flug-suchen angehangt. Das veranlasst den Router, die
damit assoziierte F1ightSearchComponent zu aktivieren.

Komponenten fiir das Routing einrichten

Um die Funktionsweise des Routers zu veranschaulichen, werden wir endlich die Menubefehle auf
der linken Seite an unsere Bediirfnisse anpassen und mit Leben erfiillen:

Navigationsstrukturen schaffen: Der Angular Router 56

Y Flighttpp X +

& C @ hitpy//localhost:4200/flight-search W B e

Y rLGHTS 42 B o @

o Flight Search

From:

ERS Hamburg
To:
Graz

BASKE [J Delayed

Basket

5
l

"3": true,
"5": true

}

Der Router hat die FlightSearchComponent in den Platzhalter geladen

Der Platzhalter befindet sich in dieser Anwendung rechts vom Seitenmenii. Er soll abhéngig vom
Anwendungszustand eine der folgenden Komponenten anzeigen:

+ HomeComponent: Zeigt eine Begriflung an.

« FlightSearchComponent: Unsere Komponente zum Suchen nach Fliigen.

» PassengerSearchComponent: Komponente zum Suchen nach Passagieren. Vorerst handelt es
sich dabei lediglich um eine Dummy-Komponente, die als weiteres Routing-Ziel fungiert.

« FlightEditComponent: Komponente zum Editieren von Fliigen. Auch hierbei handelt es sich um
eine Dummy-Komponente, die als weiteres Routing-Ziel zum Einsatz kommt. Anders als bei
der PassengerSearchComponent nehmen wir hier allerdings einen Routing-Parameter entgegen.

« AboutComponent: Zeigt allgemeine Informationen zur Anwendung.

+ NotFoundComponent: Wird angezeigt, wenn die gewiinschte Route nicht gefunden wurde.

Diese - bis auf die F1ightSearchComponent — neuen Komponenten kénnen Sie wie gewohnt mit der
Angular CLI erzeugen:

a b W N -

Navigationsstrukturen schaffen: Der Angular Router 57

ng generate component home

ng generate component passenger-search
ng generate component flight-edit

ng generate component about

ng generate component not-found

Bitte beachten Sie, dass die zweite Anweisung die PassengerSearchComponent im Ordner flight-
booking erzeugt. Darin befindet sich unser F1ightBookingModule, bei dem die CLI die Komponente
auch registriert. Alle anderen Komponenten erzeugt die CLI im Ordner app und registriert sie bei
der sich dort befindlichen AppComponent.

Anstatt die CLI auf der Konsole zu nutzen, konnen Sie auch auf das bereits besprochene Plug-in
Angular Schematics in Visual Studio Code zuriickgreifen.

Priifen Sie zur Sicherheit, ob die Angular CLI die generierten Komponenten erfolgreich
beim AppModule registriert hat.

Da unsere Benutzer eine ordentliche Begriiffung verdienen, haben wir das Template der
HomeComponent entsprechend abgeandert:

<!-- src/app/home/home.component.html -->
<h1>Welcome!</h1>

Routing-Konfiguration einrichten

Damit der Router weifl, wann welche Komponente zu aktivieren ist, stellen wir ihm im Ord-
ner src/app die Datei app.routes.ts mit einer Routing-Konfiguration fiir die Komponenten im
AppModule bereit.

Bei einer RouterKonfiguration Konfiguration Routing-Konfiguration handelt es sich um eine her-
kommliche TypeScript-Datei, die sich direkt in Visual Studio Code erzeugen lasst (Rechtsklick auf
den Ordner app | New File). Darin befindet sich eine Array-Konstante mit Objekten vom Typ Route,
die in erster Linie Pfade auf Komponenten abbilden:

© 00 =N O O & W N =~

BB DWW WWWWWW W WN DN DNDDDNDDNDDNDDNDNDN RS A,
W N~ OO O 0N O 0 B WON A0 O N O O d»x WONAO00 O 0 N O O & Ww N~ 0o

Navigationsstrukturen schaffen: Der Angular Router

// src/app/app.routes.ts

import { Routes } from '@angular/router';
import { HomeComponent } from './home/home.component';
import { FlightSearchComponent } from './flight-search/flight-search.component';
import { PassengerSearchComponent }
from './passenger-search/passenger-search.component’;
import { FlightEditComponent } from './flight-edit/flight-edit.component';
import { AboutComponent } from './about/about.component';
import { NotFoundComponent } from './not-found/not-found.component';

export const APP_ROUTES: Routes = [

{
// Standardroute: Umleitung auf '/home'
path: "',
redirectTo: 'home',
pathMatch: 'full'
},
{
path: "home',
component: HomeComponent
},
{
path: 'flight-search',
component: FlightSearchComponent
}
{
path: 'flight-edit/:id",
component: FlightEditComponent
3,
{
path: 'passenger-search',
component: PassengerSearchComponent
),
{
path: 'about',
component: AboutComponent
},
{
path: "kx",
component: NotFoundComponent
}

58

© 00 N O O b W N =

[T N T N T o N - S S G O
N »~ © © 00 1 O O b W N =~ O

Navigationsstrukturen schaffen: Der Angular Router 59

Etwas Aufmerksamkeit verdient hier die erste Route: Diese weist keinen Pfad auf und fungiert
deswegen als Standardroute. Angular aktiviert sie, wenn der Aufrufer keinen Pfad an die URL der
SPA anhéngt. Ein Beispiel dafiir ist http://localhost:4200. Mit redirectTo leitet die Standardroute
auf die darunter definierte home-Route weiter.

Eine kleine Herausforderung gibt es jedoch bei solchen Routen: Standardméafig priift Angular nur,
ob der Pfad in der Konfiguration (z. B. path: myRoute) ein Préfix des Pfads in der URL ist (z. B.
http://localhost:4200/myRoute/something-else). Dummerweise sieht JavaScript einen Leerstring als
Préfix aller anderen Strings an. Somit wiirde der Router die Standardroute mit leerem Pfad immer
heranziehen.

Die Losung fiir dieses Problem ist die Eigenschaft pathMatch: full.In diesem Fall vergleicht Angular
den gesamten Pfad aus der Konfiguration mit dem gesamten Pfad in der URL.

Eventuell haben Sie auch die Endung :id im Pfad der FlightEditComponent entdeckt. Hierbei
handelt es sich um einen Platzhalter mit dem Namen id. Den tibergebenen Wert konnen wir spater
in der F1ightEditComponent auslesen.

Die Einstellung path: ** im letzten Eintrag bewirkt, dass samtliche weiteren Pfade zur
NotFoundComponent fithren. Damit schaffen wir ein letztes Auffangnetz.

Damit Angular diese Konfiguration aufgreift, ist sie gemeinsam mit dem RouterModule ins
AppModule zu importieren:

// src/app/app.module.ts

[...]

// Diese beiden Importe einfligen:

import { RouterModule } from '@angular/router';
import { APP_ROUTES } from './app.routes';

@NgModule({

imports: [
// Diese Zeilen hinzufligen:
RouterModule. forRoot (APP_ROUTES),
[...]

1,

declarations: |
[...]

1,

providers: [],

bootstrap: [
AppComponent

P
export class AppModule { }

http://localhost:4200
http://localhost:4200/myRoute/something-else

© 00 N O O & W N =

[N T S T N T N N S S S e = = N G Y
W N O © 0N 0O O b Ww N =~ O

Navigationsstrukturen schaffen: Der Angular Router 60

Bitte beachten Sie, dass wir hier die Routing-Konfiguration an RouterModule. forRoot libergeben.
Da diese Methode systemweite Services einrichtet, darf sie nur im AppModule aufgerufen werden.

Platzhalter in AppComponent hinterlegen

Anstatt auf eine konkrete Komponente zu verweisen, nutzt die AppComponent nun einen Platzhalter.
Dieser reprasentiert der Router durch ein router-outlet-Element:

<!-- src/app/app.component.html -->
<div class="wrapper">
<div class="sidebar" data-color="white" data-active-color="danger">
<app-sidebar-cmp></app-sidebar-cmp>

</div>

<div class="main-panel">
<app-navbar-cmp></app-navbar-cmp>

<div class="content">

<!-- Diese Zeile entfernen: -->
<!-- <app-flight-search></app-flight-search> -->

<I-- Diese Ziele hinzufligen: -->

<router-outlet></router-outlet>

</div>
</div>

</div>

Hyperlinks zum Aktivieren von Routen nutzen

Nun benétigen wir nur noch Hyperlinks, die die einzelnen Routen im Platzhalter aktivieren. Dazu
passen wir die generierte SidebarComponent an:

O© 00 9 O U b W N =~

W RN NN NN NN NN N A R R Rl sl
© © W I O O b W N A~ O © W 3 0 U » W N~

Navigationsstrukturen schaffen: Der Angular Router

<!-- src/app/sidebar/sidebar.component.html
[...]

<I-- Diese Eintrdge um routerLink -->

<!-- und routerlLinkActive erweitern: -->

<li routerLinkActive="active">

<p>Home</p>

</1i>

<li routerLinkActive="active">

<p>Flights</p>

</1i>

<li routerLinkActive="active">

<p>Passengers</p>

</1i>

<I-- Diesen Eintrag ergdnzen: -->
<li routerLinkActive="active">

<p>About</p>

</1li>

61

Die aus dem RouterModule stammende Direktive routerLink verweist auf die Pfade der konfigurier-

ten Routen. Die Direktive routerLinkActive verweist hingegen auf eine Klasse, mit deren Stylings
der aktive Mentipunkt hervorgeben wird. Standardmaf3ig weist sie die Klasse dem Element zu, wenn
das Element einen aktiven routerLink aufweist oder dies auf ein Child-Element zutriftt.

Wenn Sie nun Thre Anwendung starten, sollten die Mentieintrage auf der linken Seite auf die

einzelnen Routen verweisen:

O 00 N O O & W N =

[N
N =~ O

Navigationsstrukturen schaffen: Der Angular Router

Y Flighttpp X +
&« C @ http://localhost:4200fflight-search

) FLGHTS 42

B OO @

Flight Search

From:
PASSENGERS Hamburg
To:

Graz

BASKE [Delayed

Basket

{
"3": true,
"5": true

¥

Platzhalter

Routing in der Demoanwendung

Die aktuelle Route wird nun auch durch die URL in der Adresszeile widergespiegelt.

Routen-Parameter auslesen

Um den fir flight-edit konfigurierten Routing-Parameter auslesen zu konnen, fordert die

FlightEditComponent den Service ActivatedRoute an:

// src/app/flight-booking/flight-edit/flight-edit.component.ts

import { Component, Onlnit } from '@angular/core';
import { ActivatedRoute } from '@angular/router';

@Component ({

selector:

'app-flight-edit’',

templateUrl: './flight-edit.component.html',

styleUrls:
P

["./flight-edit.component.scss']

export class FlightEditComponent implements OnInit {

13
14
15
16
17
18
19
20
21
22
23
24
25

0 I O O b W N =~

Navigationsstrukturen schaffen: Der Angular Router 63

id = 0;
showDetails = false;

constructor(private route: ActivatedRoute) { }

ngonInit(): void {
this.route.params.subscribe(p => {
this.id = p.id;
this.showDetails = p.showDetails;

});

DieActivatedRoute bietet neben anderen Eigenschaften, die die gerade aktivierte Route beschreiben,
ein Observable params an. Dieses veroffentlicht simtliche Routing-Parameter iiber ein Objekt, das
als Dictionary genutzt wird.

Bei id handelt es sich um jenen Parameter, den wir in der Routenkonfiguration vorgesehen haben.
Den Parameter showDetails haben wir hingegen nicht konfiguriert. Aus diesem Grund geht Angular
davon aus, dass er in Form eines Name/Wert-Paares an den Pfad angehangt wird:

/flight-edit/17;showDetails=true

Im letzteren Fall spricht der URL-Standard auch iiber Matrix-Parameter. Diese werden durch
Strichpunkte getrennt und beziehen sich per Definition auf das letzte Url-Segment und bei Angular
somit auf die damit assoziierte Komponente. Der besser bekannte Query-String, der nach einem
Fragezeichen an die Url angehédngt wird, bezieht sich hingegen per Definition immer auf die gesamte
Url.

Das Template der Komponente prasentiert diese Eigenschaften:

<h1>Flight Edit</h1>

<p>
Id: {{id}}
</p>
<p>
ShowDetail: {{id}}
</p>

An dieser Stelle wollen wir uns mit der bloBen Ausgabe der Parameter zufriedengeben. Allerdings
konnte man die Informationen aus den letzten Kapiteln nutzen, um den Flug mit der erhaltenen Id
zu laden und iiber ein Formular zum Editieren anzubieten.

© 0 N O O b W N =

T S =Y
O O kW N,

17
18
19

Navigationsstrukturen schaffen: Der Angular Router 64

Auf parametrisierte Routen verweisen

Um auf parametrisierte Routen zu verweisen, nimmt routerL ink die einzelnen URL-Segmente, aber
auch Matrixparameter als Array entgegen. Das nachfolgende Beispiel erweitert das Template der
FlightCardComponent um routerlLink, der zur zuvor eingefiihrten F1ightEditComponent fiihrt:

<!-- src/app/flight-booking/flight-card/flight-card.component.html -->

<p>
<button class="btn btn-default"
*nglf="!selected"
(click)="select()">Select</button>

<button class="btn btn-default"
*nglf="selected"
(click)="deselect()">Remove</button>

<I-- Diesen Link einfilgen: -->
<a class="btn btn-default"
[routerLink]="["'../flight-edit', item?.id, {showDetails:false}]">
Edit

</p>

[..]

Die einzelnen Array-Eintrage reprasentieren URL-SegmenteURL-Segment. Die Direktive
routerLink fithrt eine URL-Codierung durch und kettet sie anschlieflend zu einer URL zusammen.
Die Eigenschaften von Objekten werden dabei zu Matrixparametern. Aus dem im betrachteten
Beispiel verwendeten Array entsteht somit der folgende Pfad, wenn wir davon ausgehen, dass
item.id den Wert 3 aufweist:

../flight-edit/3;showDetails=true
Das Prifix ../ ist notwendig, da wir vorerst davon ausgehen, dass die F1ightCardComponent von

der FlightSearchComponent aufgerufen wird. Und ihre Route ist in der Routenkonfiguration einer
Schwester von flight-edit.

Programmatisch Routen

Statt mit Hyperlinks konnen Sie einen Routenwechsel auch programmatisch anstoflen. Lassen Sie
sich dazu den Router injizieren:

O© 00 I O O b W N =

NN
= o

Navigationsstrukturen schaffen: Der Angular Router 65

[-.]

import { Router } from '@angular/router';

@Component({ [..] })
export class AppComponent {

constructor(private router: Router) { }

goHome(): void {
this.router.navigate(['/home']);

Die Methode navigate nimmt den Pfad der gewiinschten Route als Array entgegen. Jeder Array-
Eintrag entspricht einem URL-Segment. Diese werden URL-codiert und zusammengekettet. Der sich
so ergebende Pfad wird zur Identifizierung der Zielroute verwendet. Der Aufruf

this.router.navigate(['/flight-edit', id]);

fihrt somit zur Aktivierung der Route /flight-edit/17, wenn man davon ausgeht, dass die Variable
id den Wert 17 hat.

Bonus: Routing und Module

Bis jetzt haben wir zur Vereinfachung nur ein einziges Modul, namlich das AppModule, verwendet.
Um die Anwendung besser zu strukturieren bietet es sich an, jedes einzelne Feature in ein eigenes
Modul zu verschieben. Jedes dieser Module bekommt in der Regel einen eigenen Ordner aber auch
eine eigene Routen-Konfiguration.

In unserem Fall bietet sich ein F1ightBookingModule an:

Navigationsstrukturen schaffen: Der Angular Router 66

v [app
> Il about
v [flight-booking
> BB flight-card
> I flight-edit
> BB flight-search
> B passenger-search
B flight-booking.module.ts

F flight-booking.routes.ts
> I home
> @ navbar
> @ not-found
> B sidebar

app.component.html

app.component.scss
app.component.spec.ts
app.component.ts

app.module.ts

% @ 8 BYWda

app.routes.ts

Feature Module fiir Flight Booking

Samtliche Komponenten unseres Flight Booking-Features wurden in den neuen flight-booking
Ordner verschoben. Falls Sie das selbst ausprobieren sollten sie sicherstellen, dass nach dem
Verschieben samtliche Import-Anweisungen noch auf die korrekten Dateipfade verweisen.

Da diese Vorgehensweise die Struktur unserer Anwendung ein wenig verandert, haben
wir den Quellcode fiir dieses Bonus-Kapitel in einen eigenen Branch unseres Beispiel-
Projektes'” ausgelagert.

Im Ordner f1ight-booking finden wir auch die Routen-Konfiguration, die sich auf die Komponenten
des Modules beschrankt:

https://github.com/manfredsteyer/angular-intro/tree/modules

https://github.com/manfredsteyer/angular-intro/tree/modules
https://github.com/manfredsteyer/angular-intro/tree/modules
https://github.com/manfredsteyer/angular-intro/tree/modules

© 00 =N O O & W N =~

NN N N N R R b s sy
B W N PO O 0 N0 Ok WwN o

O© 00 N O O b W N =~

T S =Y
O O B W N~

Navigationsstrukturen schaffen: Der Angular Router

// src/app/flight-booking/flight-booking.routes.ts

import { Routes } from '@angular/router';
import { FlightEditComponent }
from './flight-edit/flight-edit.component';
import { FlightSearchComponent }
from './flight-search/flight-search.component’;
import { PassengerSearchComponent }
from './passenger-search/passenger-search.component’;

export const FLIGHT_BOOKING_ROUTES: Routes = [

{
path: 'flight-search',
component: FlightSearchComponent
1
{
path: 'passenger-search',
component: PassengerSearchComponent
3,
{
path: 'flight-edit/:id’,
component: FlightEditComponent
},

1;

Beim F1ightBookingModule handelt es sich wie beim AppModule um eine Klasse mit Metadaten:

// src/app/flight-booking/flight-booking.module.ts

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { FlightSearchComponent }

from './flight-search/flight-search.component’;
import { FlightCardComponent }

from './flight-card/flight-card.component';
import { PassengerSearchComponent }

from './passenger-search/passenger-search.component’;
import { FlightEditComponent }

from './flight-edit/flight-edit.component';
import { RouterModule } from '@angular/router';
import { FormsModule } from '@angular/forms';

import { FLIGHT_BOOKING_ROUTES } from './flight-booking.routes';

67

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Navigationsstrukturen schaffen: Der Angular Router 68

@NgModule({
imports: [
CommonModule,

// Important: Routes are referenced with **forChild**
RouterModule. forChild(FLIGHT_BOOKING_ROUTES),

// Dont't forget this if you want to work with Forms
FormsModule,
1,
declarations: [
FlightSearchComponent,
FlightCardComponent,
PassengerSearchComponent,
FlightEditComponent,
1,

1)
export class FlightBookingModule { }

Wichtig ist hier, das die Routen fiir Feature-Module an RouterModule. forChild zu iibergeben sind.
Lediglich das Root-Modul, also unser AppModule, ruft RouterModule. forRoot auf. Das ist eine iibliche
Konvention in der Welt von Angular. Sie stellt sicher, dass eine Bibliothek wie der Router globale
Services nur ein einziges mal via forRoot einrichtet. Bei jeder weiteren Verwendung richtet forChild
nur mehr jene zusétzlichen Strukturen ein, die fiir die zusétzliche Nutzung im jeweiligen Feature-
Module benotigt werden.

Auflerdem importiert dieses Beispiel das CommonModule. Diese Modul kommt mit Direktiven wie
*ngl f oder *ngFor sowie mit den tiblichen Pipes wie date oder json. Da wir diese Konstrukte in der
Regel brauchen, erhilt in der Regel jedes weitere Modul diesen Import.

Eventuell ist Ihnen aufgefallen, dass das AppModule ohne Importieren des CommonModu-
les auskommt und hier trotzdem *ng1 £, *ngFor sowie die erwahnten Direktiven die ganze
Zeit zur Verfiigung standen. Das liegt daran, dass das BrowserModule, das wir von Anfang
an im AppModule importiert haben, samtliche Inhalte des CommonModules bietet.

Damit Angular das neue F1lightBookingModule beriicksichtigt, miissen wir es noch ins AppModule
importieren:

O© 00 I O O b W N =

W oW WNNNDNDDNDDNDNDNDN DN S R R R oy
N =~ ©® © 0 9 O O & WO N~ O © W 3 0 O b w N~ o

Navigationsstrukturen schaffen: Der Angular Router 69

// src/app/app.module.ts

// Add this import:
import { FlightBookingModule }
from './flight-booking/flight-booking.module"';

@NgModule({
imports: |
RouterModule. forRoot (APP_ROUTES),
HttpClientModule,
BrowserModule,
FormsModule,

// Add import for Feature-Module:
FlightBookingModule,

1,

declarations: |
AppComponent,
SidebarComponent,
NavbarComponent,
HomeComponent,
AboutComponent,
NotFoundComponent

1,

providers: [],

bootstrap: |
AppComponent

P
export class AppModule { }

Zusammenfassung

Der von Angular angebotene Router ermoglicht es, unterschiedliche Seiten innerhalb einer Single
Page Application (SPA) zu simulieren. Um ihn zu nutzen, bilden Sie Pfade auf Komponenten
ab. Finden sich diese Pfade in der aufgerufenen URL, aktiviert der Router die damit assoziierten
Komponenten in einem Platzhalter der Seite. Auflerdem konnen Sie iiber die URL Parameter an die
aktivierte Komponente weitergeben.

Nachste Schritte

Unser Angular-Buch bei O'Reilly

FallsThnen die Art und Weise, wie wir die Entwicklung mit Angular in diesem Buch erklaren, werden
Sie auch unser “grofles” Angular-Buch bei O’Reilly mogen:

O'REILLY" %

Angular

Das Praxisbuch zu Grundlagen
und Best Practices

Manfred Steyer

Angular Buch bei O’Reilly

Es liegt mittlerweile in der 3. Auflage vor. Alle Details finden sich hier*>.

Phttps://oreilly.de/produkt/angular-2/

https://oreilly.de/produkt/angular-2/
https://oreilly.de/produkt/angular-2/

Nichste Schritte 71

Trainings und Consulting

Erfahren Sie mehr tiber Angular fiir grofle Unternehmens-Anwendungen in unserem Advanced
Online Workshop':

\ Manfred Steyer, GDE

ANGULAR

ARCHITECTS

INSIDE KNOWLEDGE

Advanced Angular Workshop

Sichern Sie sich Thre Tickets jetzt fiir sich und Ihre Kollegen.

Dariiber hinaus bieten wir folgende Themen als Teil unserer Schulungs- oder Beratungsworkshops
an:

« Angular Workshop: Strukturierte Einfithrung

« Advanced Angular: Enterprise Solutions und Architektur

« Professional Angular Testing Workshop (Cypress, Just, etc.)
« Reaktive Architekturen mit Angular (RxJS and NGRX)

+ Angular Review Workshop

« Angular Upgrade Workshop

Wenn Sie Fragen haben, konnen Sie gerne auf uns zukommen: office@softwarararchitekt.at".

Bleiben Sie mit uns in Kontakt, z. B. via Twitter'® oder Facebook"’.

“https://www.angulararchitects.io/en/angular-workshops/advanced-angular-enterprise-architecture-incl-ivy/
mailto:office@softwarararchitekt.at

*“https://twitter.com/manfredsteyer

https://www.facebook.com/manfred.steyer

https://www.angulararchitects.io/en/angular-workshops/advanced-angular-enterprise-architecture-incl-ivy/
https://www.angulararchitects.io/en/angular-workshops/advanced-angular-enterprise-architecture-incl-ivy/
mailto:office@softwarararchitekt.at
https://twitter.com/manfredsteyer
https://www.facebook.com/manfred.steyer
https://www.angulararchitects.io/en/angular-workshops/advanced-angular-enterprise-architecture-incl-ivy/
mailto:office@softwarararchitekt.at
https://twitter.com/manfredsteyer
https://www.facebook.com/manfred.steyer

	Inhaltsverzeichnis
	Einleitung
	Quellcode
	Kontakt
	Trainings and Consulting

	Erste Schritte mit Angular
	Bevor es losgeht: Werkzeuge installieren
	Eine neue Angular-Application erzeugen
	Ihre Angular-Anwendung starten
	Build mit CLI
	Das generierte Projekt erkunden
	Programmieren mit ``Stil'': Bootstrap installieren
	Zusammenfassung

	Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff
	Interface für Datenobjekt erzeugen
	Angular-Komponente erzeugen
	Komponentenlogik
	Auf das Backend zugreifen
	Templates und die Datenbindung
	Komponenten einbinden
	Anwendung starten
	Fehler in der Entwicklerkonsole entdecken
	Zusammenfassung

	Wiederverwendbare Sub-Komponenten und Services
	Sub-Komponenten mit Event- und Property-Bindings
	Wiederverwendbare Logik in Services auslagern
	Zusammenfassung

	Navigationsstrukturen schaffen: Der Angular Router
	Überblick
	Komponenten für das Routing einrichten
	Routing-Konfiguration einrichten
	Platzhalter in AppComponent hinterlegen
	Hyperlinks zum Aktivieren von Routen nutzen
	Routen-Parameter auslesen
	Auf parametrisierte Routen verweisen
	Programmatisch Routen
	Bonus: Routing und Module
	Zusammenfassung

	Nächste Schritte
	Unser Angular-Buch bei O'Reilly
	Trainings und Consulting

