

Einführung in Angular

Manfred Steyer

Dieses Buch wird verkauft unter http://leanpub.com/einfhrung-in-angular

Diese Version wurde veröffentlicht am 2022-01-02

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit Hilfe von Lean-Publishing,
neue Möglichkeiten des Publizierens. Lean Publishing bedeutet die wiederholte Veröffentlichung
neuer Beta-Versionen eines eBooks unter der Zuhilfenahme schlanker Werkzeuge. Das Feedback
der Erstleser hilft dem Autor bei der Finalisierung und der anschließenden Vermarktung des
Buches. Lean Publishing unterstützt den Autor darin ein Buch zu schreiben, das auch gelesen wird.

© 2021 - 2022 Manfred Steyer

http://leanpub.com/einfhrung-in-angular
http://leanpub.com/
http://leanpub.com/manifesto

Inhaltsverzeichnis

Einleitung . 1
Quellcode . 1
Kontakt . 1
Trainings and Consulting . 1

Erste Schritte mit Angular . 3
Bevor es losgeht: Werkzeuge installieren . 3
Eine neue Angular-Application erzeugen . 4
Ihre Angular-Anwendung starten . 5
Build mit CLI . 7
Das generierte Projekt erkunden . 8
Programmieren mit “Stil”: Bootstrap installieren . 10
Zusammenfassung . 12

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 13
Interface für Datenobjekt erzeugen . 14
Angular-Komponente erzeugen . 14
Komponentenlogik . 16
Auf das Backend zugreifen . 18
Templates und die Datenbindung . 23
Komponenten einbinden . 29
Anwendung starten . 30
Fehler in der Entwicklerkonsole entdecken . 31
Zusammenfassung . 35

Wiederverwendbare Sub-Komponenten und Services . 36
Sub-Komponenten mit Event- und Property-Bindings . 36
Wiederverwendbare Logik in Services auslagern . 48
Zusammenfassung . 53

Navigationsstrukturen schaffen: Der Angular Router . 54
Überblick . 54
Komponenten für das Routing einrichten . 55
Routing-Konfiguration einrichten . 57
Platzhalter in AppComponent hinterlegen . 60

INHALTSVERZEICHNIS

Hyperlinks zum Aktivieren von Routen nutzen . 60
Routen-Parameter auslesen . 62
Auf parametrisierte Routen verweisen . 64
Programmatisch Routen . 64
Bonus: Routing und Module . 65
Zusammenfassung . 69

Nächste Schritte . 70
Unser Angular-Buch bei O’Reilly . 70
Trainings und Consulting . 71

Einleitung
In den letzten Jahren habe ich zahlreiche Unternehmen mit der Umsetzung von Unternehmens- und
Industrieanwendungen mit Angular geholfen. Sowohl mit der Einführung als auch mit weiterfüh-
renden Konzepten. Mit diesem Buchmöchte ich auch Ihnen zeigen, wie Sie Angular für Ihre Projekte
nutzen können.

Dazu erstellen wir gemeinsam im Laufe der Kapitel eine vollständige Angular-Anwendung und
verfeinern sie nach und nach. Der Fokus liegt sowohl auf der konkreten Umsetzung als auch auf der
Schaffung eines guten Verständnisses für die dahinterliegende Konzepte. Alle Aspekte, die Sie für
eine erste Angular-Anwendung benötigen werden dabei besprochen.

Quellcode

Den Quellcode der Beispielanwendung, auf die sich die Beispiele in diesem Buch beziehen, finden
Sie in unserem GitHub-Account¹.

Kontakt

Wenn Sie Fragen oder Feedback haben, erreichen Sie uns am besten via man-
fred.steyer@angulararchitects.io².

Außerdem finden Sie mich auch auf Twitter³ und Facebook⁴. Lassen Sie uns in Kontakt bleiben, um
aktuelle Updates rund um Angular zu erhalten.

Trainings and Consulting

Wenn Sie und Ihr Team Unterstützung oder Schulungen in Bezug auf Angular benötigen, helfen wir
Ihnen gerne mit unseren Workshops und Beratungen – sowohl vor Ort als auch per Remote. Wir
bieten unter anderem Workshops für folgende Themen an:

• Angular Workshop: Strukturierte Einführung (3 Tage)
• Advanced Angular: Enterprise Solutions and Architecture (3 Tage)
• Angular Architecture Consulting

¹https://github.com/manfredsteyer/angular-intro
²mailto:manfred.steyer@angulararchitects.io
³https://twitter.com/manfredsteyer
⁴https://www.facebook.com/manfred.steyer

https://github.com/manfredsteyer/angular-intro
mailto:manfred.steyer@angulararchitects.io
mailto:manfred.steyer@angulararchitects.io
https://twitter.com/manfredsteyer
https://www.facebook.com/manfred.steyer
https://github.com/manfredsteyer/angular-intro
mailto:manfred.steyer@angulararchitects.io
https://twitter.com/manfredsteyer
https://www.facebook.com/manfred.steyer

Einleitung 2

• Professional Angular Testing Workshop mit Cypress, Jest, etc. (3 Tage)
• Angular: Reactive Architekturen mit RxJS and NGRX (2 Tage)
• Angular Review Consulting Workshop
• Angular Upgrade Consulting Workshop

Sie finden hier unser volles Workshop-Angebot⁵.

Advanced Angular Workshop

Wir bieten unsere Workshop in verschiedenen Formen an: Online, Öffentlich oder als
Unternehmens-Workshop sowohl in Englisch als auch in Deutsch.

Wenn Sie Fragen haben, können Sie gerne auf uns zukommen: office@softwarararchitekt.at⁶.

⁵https://www.angulararchitects.io/en/angular-workshops/
⁶mailto:office@softwarararchitekt.at

https://www.angulararchitects.io/en/angular-workshops/
mailto:office@softwarararchitekt.at
https://www.angulararchitects.io/en/angular-workshops/
mailto:office@softwarararchitekt.at

Erste Schritte mit Angular
Bevor es losgeht: Werkzeuge installieren

Bevor wir mit Ihrer ersten Angular-Anwendung loslegen können, müssen wir erst mal ein paar
Werkzeuge einrichten.

Visual Studio Code

Wir nutzen in diesem Buch die freie Entwicklungsumgebung Visual Studio Code⁷. Sie funktioniert
auf allen wichtigen Betriebssystemen (Linux, OSX,Windows) und ist äußerst leichtgewichtig. Visual
Studio Code unterstützt ab Werk die Sprache TypeScript.

Außerdem existieren zahlreiche Erweiterungen, die die Arbeit mit Frameworks wie Angular
vereinfachen. UmErweiterungen zu installieren, klicken Sie auf das Symbol Extensions in der linken
Symbolleiste. Anschließend können Sie nach Erweiterungen suchen und diese installieren:

Erweiterungen in Visual Studio Code installieren

Für die Entwicklung von Angular-Lösungen empfehlen wir die folgenden Erweiterungen:

⁷https://code.visualstudio.com

https://code.visualstudio.com/
https://code.visualstudio.com/

Erste Schritte mit Angular 4

• Angular Language Service: Der Angular Language Service wird vom Angular-Team bereit-
gestellt und erlaubt Angular-bezogene Codevervollständigungen in HTML-Templates. Außer-
dem weist der Language Service auch auf mögliche Fehler in HTML-Templates hin.

• Angular Schematics: Erlaubt das Generieren von Building-Blocks wie Angular-Komponenten
über das Kontextmenü von Visual Studio Code.

• Debugger for Chrome: Erlaubt das Debuggen von JavaScript-Anwendungen, die in Chrome
ausgeführt werden.

Neben Visual Studio Code haben wir auch mit den kommerziellen Produkten WebStorm,
PhpStorm bzw. IntelliJ von Jetbrains (https://www.jetbrains.com/) sehr gute Erfahrungen
gemacht.

Angular CLI

Um keine Zeit mit dem Einrichten aller benötigten Werkzeuge zu verlieren, bietet das Angular-
Team das sogenannte Angular Commandline Interface, kurz Angular CLI⁸, an. Die CLI generiert
nicht nur das Grundgerüst der Anwendung, sondern auf Wunsch auch die Grundgerüste weiterer
Anwendungsbestandteile wie z. B. Komponenten.

Außerdem kümmert sie sich um das Konfigurieren des TypeScript-Compilers und einer Build-
Konfiguration zur Erzeugung optimierter Bundles. Werkzeuge für die Testautomatisierung richtet
die CLI ebenfalls ein.

Die CLI lässt sich leicht über den Package-Manager npm beziehen, der sich im Lieferumfang von
Node.js⁹ befindet. Außerdem nutzt die CLI Node.js als Laufzeitumgebung. Wir haben gute Erfah-
rungen mit den jeweiligen Long-Term-Support-Versionen (LTS-Versionen) gemacht. Der Einsatz
älterer Versionen kann zu Problemen führen.

Sobald Node.js installiert ist, kann die CLI mittels npm eingerichtet werden:

1 npm install -g @angular/cli

Der Schalter -g bewirkt, dass +npm+ das Werkzeug systemweit, also global, einrichtet, sodass es
überall zur Verfügung steht. Ohne diesen Schalter würde npm das adressierte Paket lediglich für
ein lokales Projekt im aktuellen Ordner einrichten. Nach der Installation steht die CLI über das
Kommando ng zur Verfügung.

Eine neue Angular-Application erzeugen

Ein Aufruf von

⁸https://cli.angular.io
⁹https://nodejs.org

https://cli.angular.io/
https://nodejs.org/
https://cli.angular.io/
https://nodejs.org/

Erste Schritte mit Angular 5

1 ng new flight-app

generiert das Grundgerüst einer neuen Angular-Anwendung, die den Namen flight-app erhält.
Dazu stellt uns die CLI ein paar Fragen:

ng new stellt ein paar Fragen, bevor es ein neues Projekt generiert

Je nach Angular-Version können diese Fragestellungen etwas variieren. Wir gehen hier von
folgenden Einstellungen aus:

• Add Angular Routing: Diese Frage beantworten wir hier mit No. Um das Thema Routing
kümmern wir uns in einem späteren Kapitel.

• Stylesheet Format: Wir empfehlen hier SCSS, eine Übermenge von CSS. Die Angular CLI
kompiliert diese Dateien für den Browser nach CSS.

Da ng new auch zahlreiche Pakete via npm bezieht, kann der Aufruf etwas länger dauern.

Ihre Angular-Anwendung starten

Um Ihre Anwendung zu starten, wechseln Sie in den generierten Projektordner. Dabei handelt es
sich um jenen Ordner, der auch die Datei angular.json enthält. Ein Aufruf von ng serve startet die
Anwendung in einem Demo-Webserver:

1 cd flight-app

2 ng serve -o

Der Schalter -o öffnet einen Browser, der die Anwendung anzeigt. Standardmäßig findet sich diese
Anwendung unter http://localhost:4200. Ist Port 4200 schon belegt, erkundigt sich ng serve nach
einer Alternative. Außerdem nimmt der Schalter --port den gewünschten Port gleich beim Start von
ng serve entgegen:

Erste Schritte mit Angular 6

1 ng serve -o --port 4242

Die im Browser angezeigte Anwendung sieht wie folgt aus:

Generierte Angular-Anwendung

Auch hier kann es von Version zu Version zu Abweichungen kommen.

Der für die Entwicklung gedachte Befehl ng serve macht aber noch ein wenig mehr: Er überwacht
sämtliche Quellcodedateien und stößt das Kompilieren sowie Generieren der Bundles erneut an,
wenn sie sich ändern. Danach aktualisiert er auch das Browserfenster.

Um das auszuprobieren, können Sie mit Visual Studio Code die Datei src\app\app.component.html
öffnen und z. B. das erste Vorkommen von Welcome durch Hello World! ersetzen. Daraufhin
sollte ng serve den betroffenen Teil der Anwendung neu kompilieren, bundeln und den Browser
aktualisieren:

Erste Schritte mit Angular 7

Generierte Angular-Anwendung ändern

Die automatische Generierung der Bundles nach einer Änderung am Programmcode funktioniert
meist ganz gut, aber ab und an kommt die CLI aus dem Tritt. Das ist unter anderem dann der Fall,
wenn Sie mehrere Dateien rasch hintereinander speichern. Auch das Umbenennen von Dateien
bringt diesen Mechanismus aus dem Konzept.

Abhilfe schafft hier ein erneutes Speichern der betroffenen Dateien oder – wenn alle Stricke reißen
– ein Neustart von ng serve.

Build mit CLI

Während ng serve für die Entwicklung sehr komfortabel ist, eignet es sich nicht für den Produkti-
onseinsatz. Um Bundles für die Produktion zu generieren, nutzen Sie die Anweisung

1 ng build

Seit Angular CLI 12 führt ng build zahlreiche Optimierungen, die zu kleineren Bundles führen,
automatisch durch. Davor musste man diese Optimierungen explizit mit dem Schalter --prod

anfordern.

Ein Beispiel für eine solche Optimierung ist die Minifizierung, bei der unnötige Zeichen wie
Kommentare oder Zeilenschaltungen entfernt sowie Ihre Anweisungen durch kürzere Gegenstü-
cke ersetzt werden. Ein weiteres Beispiel ist das sogenannte Tree-Shaking, das nicht benötigte

Erste Schritte mit Angular 8

Framework-Bestandteile identifiziert und entfernt. Diese Optimierungen verlangsamen natürlich
den Build-Prozess ein wenig.

Die generierten Bundles finden sich im Ordner dist/flight-app. Im Rahmen der Bereitstellung
müssen Sie diese Dateien lediglich auf den Webserver Ihrer Wahl kopieren. Da es sich aus Sicht
des Webservers hierbei um eine statische Webanwendung handelt, müssen Sie dort auch keine
zusätzliche Skriptsprache und kein Web-Framework installieren.

Das generierte Projekt erkunden

Lassen Sie uns nun ein paar der generierten Programmdateien unter src/app etwas genauer
betrachten. Starten wir dabei mit der generierten AppComponent. Es handelt sich dabei um jene
Komponente, die Angular beim Programmstart anzeigt. Wie die meisten Angular-Komponenten
besteht sie aus mehreren Dateien:

• app.component.ts: TypeScript-Datei, die das Verhalten der Komponente definiert.
• app.component.html: HTML-Datei mit der Struktur der Komponente.
• app.component.scss: Datei mit lokalen Styles für die Komponente. Allgemeine Styles können
in die besprochene styles.scss eingetragen werden.

Bei der app.component.ts handelt es sich um eine einfache Klasse mit einer Eigenschaft title:

1 import { Component } from '@angular/core';

2

3 @Component({

4 selector: 'app-root',

5 templateUrl: './app.component.html',

6 styleUrls: ['./app.component.scss']

7 })

8 export class AppComponent {

9 title = 'flight-app';

10 }

Der title ist vom Typ string. Letzteres muss hier gar nicht explizit angeben werden: TypeScript
kann sich diesen Umstand aus dem zugewiesenen Standardwert herleiten.

Die Angabe von export definiert, dass die Klasse auch in anderen Dateien der Anwendung genutzt
werden darf.

Die Klasse wurde mit dem Dekorator Component versehen. Dekoratoren definieren Metadaten für
Programmkonstrukte wie z. B. Klassen. Der Component teilt beispielsweise Angular mit, dass diese
Klasse eine Komponente repräsentiert. Das Programmcode importiert den Dekorator in der ersten
Zeile aus dem Paket @angular/core.

Erste Schritte mit Angular 9

DieMetadaten imDekorator beinhalten den Selektor der Komponente. Das ist in der Regel der Name
eines HTML-Elements, das die Komponente repräsentiert. Um die Komponente aufzurufen, können
Sie also die folgende Schreibweise in einer HTML-Datei verwenden:

1 <app-root></app-root>

Der Dekorator verweist außerdem auf das HTML-Template der Komponente und ihre SCSS-Datei
mit lokalen Styles. Letztere ist standardmäßig leer. Die HTML-Datei beinhaltet den Code für die
oben betrachtete Startseite. Die ist zwar schön, enthält aber eine Menge HTML-Markup. Ersetzen
Sie mal zum Ausprobieren den gesamten Inhalt dieser HTML-Datei durch folgendes Fragment:

1 <h1>{{title}}</h1>

Wenn Sie nun die Anwendung starten (falls noch nicht geschehen: ng serve -o), sollten Sie
den Inhalt der Eigenschaft title als Überschrift sehen. Die beiden geschweiften Klammernpaare
definieren eine sogenannte Datenbindung. Angular bindet also die angegebene Eigenschaft an die
jeweilige Stelle im Template.

Mehr Informationen zu Datenbindungen finden Sie in den nächsten beiden Kapiteln. Um diesen
Rundgang durch die generierten Programmdateien abzuschließen, möchten wir jedoch noch auf
drei weitere generierte Dateien hinweisen. Eine davon ist die Datei app.module.ts, die ein Angular-
Modul beinhaltet:

1 import { BrowserModule } from '@angular/platform-browser';

2 import { NgModule } from '@angular/core';

3 import { AppComponent } from './app.component';

4

5 @NgModule({

6 declarations: [

7 AppComponent

8],

9 imports: [

10 BrowserModule

11],

12 providers: [],

13 bootstrap: [AppComponent]

14 })

15 export class AppModule { }

Angular-Module sind Datenstrukturen, die zusammengehörige Building-Blocks wie Komponenten
zusammenfassen. Technisch gesehen, handelt es sich dabei um eine weitere Klasse. Sie ist in den
meisten Fällen leer und dient lediglich als Träger von Metadaten, die über den NgModule-Dekorator
angegeben werden.

Lassen Sie uns einen Blick auf die Eigenschaften von +NgModule+ werfen:

Erste Schritte mit Angular 10

• declarations: Definiert die Inhalte des Moduls. Derzeit beschränken diese sich auf unsere
AppComponent. Sie wird in der dritten Zeile unter Angabe eines relativen Pfads, der auf die
Datei app.component.ts verweist, importiert. Die Dateiendung .ts wird hierbei weggelassen.

• imports: Importiert weitere Module. Das gezeigte Beispiel importiert lediglich das
BrowserModule, das alles beinhaltet, um Angular im Browser auszuführen. Das ist auch
der Standardfall.

• providers: Hier könnte man sogenannte Services, die Logiken für mehrere Komponenten
anbieten, registrieren. Kapitel XY geht darauf ein.

• bootstrap: Diese Eigenschaft verweist auf sämtliche Komponenten, die beim Start der Anwen-
dung zu erzeugen sind. Häufig handelt es sich dabei lediglich um eine einzige Komponente.
Diese sogenannte Root-Component repräsentiert die gesamte Anwendung und ruft dazu
weitere Komponenten auf.

Das Modul, das die Root-Component bereitstellt, wird auch als Root-Module bezeichnet. Angular
nimmt es beim Start der Anwendung entgegen und rendert die darin zu findende Root-Component.
Diese Komponente ist in der index.html aufzurufen:

1 <body>

2 <app-root></app-root>

3 </body>

Sowohl ng serve als auch ng build ergänzen diese index.html auch um Verweise auf die erzeugten
JavaScript-Bundles, die unseren Quellcode enthalten.

Programmieren mit “Stil”: Bootstrap installieren

Da auch “das Auge mitprogrammiert”, wollen wir an dieser Stelle ein paar vordefinierte Styles ins
Spiel bringen. Wir nutzen hier die populäre Stylesheet-Bibliothek Bootstrap.

Der Vorteil von Bootstrap liegt neben seiner äußerst weiten Verbreitung in der Tatsache,
dass es unaufdringlich ist. Es definiert lediglich ein paar (S)CSS-Klassen, die man auf
bekannte HTML-Elemente anwenden kann. Im Gegensatz zu anderen Lösungen muss
man also zunächst keine weiteren HTML-Elemente erlernen.

Da das Standard-Design von Bootstrap ein wenig langweilig ist, nutzen wir auch ein freies Bootstrap
Theme. Es nennt sich Paper-Design und kommt von Creative Tim¹⁰. Dazu könnten Sie nun natürlich
Bootstrap via npm installieren und die CSS-Dateien des Themes in Ihr Projekt kopieren.

Um diese Aufgabe ein wenig zu vereinfachen, haben wir ein Meta-Paket bereitgestellt. Sie können
es einfach via ng add installieren:

¹⁰https://www.creative-tim.com

https://www.creative-tim.com/
https://www.creative-tim.com/

Erste Schritte mit Angular 11

1 ng add @angular-architects/paper-design

Bei ng add handelt es sich um einen Mechanismus der CLI, der beim Hinzufügen von Paketen hilft.
Er installiert ein Paket und führt ein Skript aus, das das Paket einrichtet. Natürlich könnte man die
dazu notwenigen Schritte auch manuell ausführen.

Die Ausführung von ng add gestaltet sich wie folgt:

Generierte Angular-Anwendung

Wie Sie hier sehen, verschiebt dieser Befehl die AppComponent und das AppModule in den Ordner
bak (siehe Zeilen mit RENAME). Danach generiert er die beiden erneut im Ordner src/app. Außerdem
generiert er eine NavbarComponent und eine SideBarComponent für die Navigation.

Danach erweitert dieser Aufruf von ng add die Dateien angular.json und index.html. Erstere erhält
Verweise auf die Style-Dateien von Bootstrap und dem freien Paper Design-Theming von Creative
Tim:

1 "styles": [

2 "node_modules/@angular-architects/paper-design/assets/css/bootstrap.css",

3 "node_modules/@angular-architects/paper-design/assets/scss/paper-dashboard.scss",

4 "src/styles.scss"

5],

In diesem Listing sieht man übrigens auch die von ng new generiere Datei src/styles.scss, in der
Sie Ihre eigenen globalen Styles hinterlegen können.

Erste Schritte mit Angular 12

Die index.html erhält zwei link-Elemente zum Laden des vom Theming verwendeten Webfonts.

Leider liest ng serve globale Konfigurationsdateien wie die angular.json nur beim
Programmstart. Falls ng serve bereits läuft, müssen Sie es deswegen beenden (Strg+C)
und neu starten.

Startet man die Anwendung erneut mit ng serve -o, ergibt sich das folgende Bild:

Anwendung mit Style-Bibliothek

Links sieht man die generierte SideBarComponent und im oberen Bereich die ebenfalls generierte
NavBarComponent. Sämtliche Links sind derzeit noch Dummies – aber das wird sich im Laufe des
Buchs noch ändern.

Tipp: Werfen Sie einen Blick auf den Quellcode der beiden generierten Komponenten
und der in der angular.json erzeugten Einträge. Wie schon erwähnt, könnten Sie diese
Dateien auch manuell einrichten und erweitern. Da das jedoch in der Regel monoton und
fehleranfällig ist, freuen wir uns über ng add.

Zusammenfassung

Die Angular CLI hilft beim Einrichten, Ausführen und Bauen von Angular-Projekten. Es genügt ein
einfaches ng new, und schon können Sie loslegen. Wie bei jedem generierten Projekt-Setup müssen
Sie sich jedoch ein wenig Zeit nehmen, um sich mit den generierten Dateien vertraut zu machen.

Ihr erste Angular-Anwendung:
Komponenten, Datenbindung und
HTTP-Zugriff
Um Ihnen die einzelnen Aspekte von Angular zu vermitteln, verwenden wir in diesem Buch ein
durchgängiges Beispiel. Sie können es in unserem GitHub-Account¹¹ finden. Dabei handelt es sich
um eine Anwendung zum Buchen von Flügen. Wir setzen dazu auf die im letzten Kapitel generierte
Anwendung auf:

Anwendung zum Suchen nach Flügen

¹¹https://github.com/manfredsteyer/angular-intro

https://github.com/manfredsteyer/angular-intro
https://github.com/manfredsteyer/angular-intro

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 14

Interface für Datenobjekt erzeugen

Da wir mit Flügen arbeiten wollen, brauchen wir einen Datentyp der die Struktur der Flug-
Objekte widerspiegelt. Hierzu legen wir zunächst im Ordner src/app eine Datei flight.tsmit dem
folgenden Interface an:

1 // src/app/flight.ts

2 export interface Flight {

3 id: number;

4 from: string;

5 to: string;

6 date: string;

7 delayed?: boolean;

8 }

Angular-Komponente erzeugen

Nun erstellen wir eine Angular-Komponente für den besprochenen Anwendungsfall erstellen.
Wechseln Sie dazu auf die Konsole. Führen Sie im Hauptverzeichnis der Anwendung (Verzeichnis
mit der angular.json) den folgenden Befehl aus:

1 ng generate component flight-search

Die Befehle der CLI lassen sich abkürzen, die betrachtete Anweisung könnte man
beispielsweise auch wie folgt formulieren:

1 ng g c flight-search

Mit dem in Kapitel 1 erwähnten Visual Studio Plug-in Angular Schematics Angular
Schematics lässt sich dieser CLI-Befehl auch direkt über Visual Studio Code anstoßen.
Wählen Sie dazu die Anweisung Angular: Generate a component aus dem Kontextmenü
des gewünschten Ordners.

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 15

Komponente in Visual Studio Code generieren

Nach dem Auswählen dieser Anweisung stellt Ihnen Visual Studio Code mehrere Fragen.
Die Frage nach dem Komponentennamen beantworten Sie analog zum oben diskutierten
Befehl mit flight-search. Die anderen Fragen können Sie einfach mit Enter quittieren,
um mit den Standardeinstellungen der CLI vorlieb zu nehmen.

Die Angular CLI generiert daraufhin mehrere Dateien für die gewünschte Komponente:

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 16

Komponente zum Suchen nach Flügen mit der CLI generieren

Diese Dateien richtet die CLI im Ordner src/app/flight-search ein:

• flight-search.component.html: Das Template der Komponente. Es bestimmt, wie Angular die
Komponente darstellt.

• flight-search.component.ts: Die TypeScript-Klasse, die die Komponente repräsentiert. Sie
definiert das gewünschte Verhalten.

• flight-search.component.scss: Die Stylesheet-Datei mit lokalen Styles für unsere Komponen-
te.

Die Dateien flight-search.component.ts* und flight-search.component.html werden wir in den
nachfolgenden Abschnitten näher betrachten und für unsere Zwecke anpassen.

Komponentenlogik

Die generierte Datei flight-search.component.ts beinhaltet das Grundgerüst für unsere Kompo-
nentenlogik:

1 // src/app/flight-search/flight-search.component.ts

2 import { Component, OnInit } from '@angular/core';

3

4 @Component({

5 selector: 'app-flight-search',

6 templateUrl: './flight-search.component.html',

7 styleUrls: ['./flight-search.component.scss']

8 })

9 export class FlightSearchComponent implements OnInit {

10

11 constructor() { }

12

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 17

13 ngOnInit(): void {

14 }

15

16 }

Viele der hier generierten Konstrukte haben wir bereits in Kapitel 1 im Rahmen der AppComponent
besprochen. Allerdings möchten wir hier Ihre Aufmerksamkeit auf ein paar Details lenken:

• Der Selektor lautet app-flight-search. Das Präfix app wurde von der CLI eingefügt. Diese
Präfixe sollen Namenskonflikte mit Komponenten aus Bibliotheken verhindern.

• Die generierte Klasse nennt sich FlightSearchComponent, während die zugrunde liegendeDatei
den Namen flight-search.component.ts erhalten hat. Hierbei handelt es sich um die üblichen
Namenskonventionen in der Welt von Angular.

• FlightSearchComponent implementiert das Interface OnInit, das wiederum die Methode
ngOnInit vorgibt. Diese Methode ruft Angular nach dem Initialisieren der Komponente auf,
und somit kann sie für Initialisierungen von Eigenschaften verwendet werden.

Lassen Sie uns nun dieses Grundgerüst ein wenig ausbauen, um eine Suche nach Flügen zu
ermöglichen:

1 // src/app/flight-search/flight-search.component.ts

2

3 import { Component, OnInit } from '@angular/core';

4 import { Flight } from '../flight';

5

6 @Component({

7 selector: 'app-flight-search',

8 templateUrl: './flight-search.component.html',

9 styleUrls: ['./flight-search.component.scss']

10 })

11 export class FlightSearchComponent implements OnInit {

12

13 from = 'Hamburg';

14 to = 'Graz';

15 flights: Array<Flight> = [];

16 selectedFlight: Flight | null = null;

17

18 constructor() {

19 }

20

21 ngOnInit(): void {

22 }

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 18

23

24 search(): void {

25 // Implementierung folgt weiter unten.

26 }

27

28 select(f: Flight): void {

29 this.selectedFlight = f;

30 }

31

32 }

Die Eigenschaften from und to repräsentieren die Suchkriterien für die gewünschten Flüge. Die
Standardwerte sollen hier verhindern, dass wir später immer wieder die gleichen Suchkriterien
eingeben müssen. Außerdem lassen sie uns auf den ersten Blick erkennen, ob der weiter unten
angestrebte automatische Abgleich zwischen den Eigenschaften und den Textfeldern funktioniert.

Das Array flights nimmt die gefundenen Flüge auf. Es ist mit dem zu erzeugten Interface Flight
typisiert.

Die Eigenschaft selectedFlight repräsentiert den ausgewählten Flug. Damit sie initial den Wert
null bekommen kann, ist sie vom Typ Flight | null.

Angular verwendet standardmäßig TypeScript im Strict Mode. Das bedeutet unter ande-
rem, dass Sie explizit angeben müssen, ob Eigenschaften den Wert null bzw. undefined
aufnehmen dürfen. In diesen Fällen zwingt Sie TypeScript auch dazu, vor der Verwendung
gegen diese Werte zu prüfen.

Die Methode search kümmert sich um das Abrufen der Flüge. Wir werden uns um ihre Implemen-
tierung gleich kümmern. Die Methode select notiert sich den vom Benutzer ausgewählten Flug.

Auf das Backend zugreifen

Für Ihre Hauptaufgabe muss die FlightSearchComponent via HTTP auf eine Web-API mit Flügen
zugreifen. Für solche Vorhaben bietet Angular die Klasse HttpClient. Da diese Klasse wiederver-
wendbare Dienste anbietet, ist auch von einem Service die Rede.

Um Zugriff auf den Service zu bekommen, müssen Sie zunächst das HttpClientModule in Ihr
AppModule importieren:

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 19

1 // src/app/app.module.ts

2

3 [...]

4 // Diese Zeile einfügen:

5 import { HttpClientModule } from '@angular/common/http';

6

7 @NgModule({

8 imports: [

9 //Diese Zeile unter *imports* einfügen:

10 HttpClientModule,

11 BrowserModule

12],

13 declarations: [

14 [...]

15],

16 providers: [],

17 bootstrap: [

18 AppComponent

19]

20 })

21 export class AppModule { }

Danach können Sie über den Konstruktor der FlightSearchComponent eine Instanz von HttpClient

anfordern:

1 // src/app/flight-search/flight-search.component.ts

2

3 import { HttpClient } from '@angular/common/http';

4 import { Component, OnInit } from '@angular/core';

5 import { Flight } from '../flight';

6

7 @Component({

8 selector: 'app-flight-search',

9 templateUrl: './flight-search.component.html',

10 styleUrls: ['./flight-search.component.scss']

11 })

12 export class FlightSearchComponent implements OnInit {

13

14 from = 'Hamburg';

15 to = 'Graz';

16 flights: Array<Flight> = [];

17 selectedFlight: Flight | null = null;

18

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 20

19 // HttpClient anfordern:

20 constructor(private http: HttpClient) {

21 }

22

23 [...]

24

25 }

Diese Vorgehensweise nennt sich auchDependency InjectionDependency Injection bzw.Constructor
Injection: Die benötigte Serviceinstanz wird demnach von Angular in den Konstruktor injiziert. Das
bedeutet, dass Angular entscheidet, welche konkrete Ausprägung des HttpClient die Komponente
erhält. Während Angular für den Produktionsbetrieb den “richtigen” HttpClient erzeugt, könnte
es für automatisierte Tests eine Dummy-Implementierung verwenden, die HTTP-Zugriffe lediglich
simuliert.

Da wir nun unsere HttpClient-Instanz haben, können wir damit innerhalb von search auf die Web-
API zugreifen:

1 // src/app/flight-search/flight-search.component.ts

2

3 // Wir benötigen diese drei Importe für den HttpClient:

4 import { HttpClient, HttpHeaders, HttpParams } from '@angular/common/http';

5

6 import { Component, OnInit } from '@angular/core';

7 import { Flight } from '../flight';

8

9 @Component({

10 selector: 'app-flight-search',

11 templateUrl: './flight-search.component.html',

12 styleUrls: ['./flight-search.component.scss']

13 })

14 export class FlightSearchComponent implements OnInit {

15

16 from = 'Hamburg';

17 to = 'Graz';

18 flights: Array<Flight> = [];

19 selectedFlight: Flight | null = null;

20

21 constructor(private http: HttpClient) {

22 }

23

24 ngOnInit(): void {

25 }

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 21

26

27 search(): void {

28

29 const url = 'http://demo.ANGULARarchitects.io/api/flight';

30

31 const headers = new HttpHeaders()

32 .set('Accept', 'application/json');

33

34 const params = new HttpParams()

35 .set('from', this.from)

36 .set('to', this.to);

37

38 this.http.get<Flight[]>(url, {headers, params}).subscribe({

39 next: (flights) => {

40 this.flights = flights;

41 },

42 error: (err) => {

43 console.error('Error', err);

44 }

45 });

46 }

47

48 select(f: Flight): void {

49 this.selectedFlight = f;

50 }

51

52 }

Die Methode search ruft nun bei einer von uns bereitgestellten Web API (“Rest API”) Flüge ab und
hinterlegt sie in der Eigenschaft flights:

• Die zu nutzenden HTTP-Kopfzeilen Kopfzeile HTTP-Kopfzeile stellt der HttpClientmit einer
Instanz von HttpHeaders dar. Das Beispiel übergibt die Kopfzeile Accept, um anzugeben, dass
wir JSON als Antwortformat wünschen. Dabei handelt es sich um das einzige Datenformat,
das Angular ab Werk unterstützt.

• Die zu übersendenden URL-Parameter URL-Parameter repräsentiert der HttpClient mit einer
HttpParams-Auflistung.

• Bitte beachten Sie, dass die beiden Aufrufe von set die aktuelle Auflistung nicht verändern,
sondern eine neue Auflistung zurückliefern. Deswegen verkettet das Beispiel auch die einzel-
nen Aufrufe von set.

• Die Methode get führt einen HTTP-Zugriff unter Verwendung der HTTP-Methode GET durch.
Diese Methode kommt typischerweise zum Abrufen von Daten zum Einsatz.

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 22

• Als Ergebnis des HTTP-Aufrufs erwartet der HttpClient ein JSON-Dokument, das er in ein
JavaScript-Objekt umwandelt. Den Datentyp dieses Objekts nimmt get als Typparameter
entgegen

• Das Abrufen von Daten erfolgt im Browser asynchron, also im Hintergrund. Sobald die
Daten vorliegen, bringt der HttpClient eine der beiden bei subscribe registrierten Methoden
zur Ausführung: next im Erfolgsfall und error in Fehlerfall. Das Objekt, das die Methode
subscribe anbietet, ist übrigens ein sogenanntes Observable.

• Neben der hier verwendeten Methode get bietet der HttpClient noch weitere Methoden für
andere Arten von HTTP-Zugriffen.

Methode Semantik
get<T>(url, options) Abrufen von Ressourcen.
post<T>(url, body, options) Hinzufügen einer Ressource oder Anstoßen einer

Verarbeitung am Server.
put<T>(url, body, options) Hinzufügen oder Aktualisieren einer Ressource.
patch<T>(url, body, options) Aktualisieren einer Ressource. Es müssen nur die

geänderten Eigenschaften übergeben werden.
delete<T>(url, options) Löschen einer Ressource.

Der Begriff Ressource kommt aus der Welt von HTTP und bezeichnet das abgerufene oder zu
sendende Objekt bzw. Dokument. Der Typparameter T steht für den Datentyp der Antwort. Im
oben betrachteten Beispiel war das Flight[]. Jene Methoden, die Daten zum Server senden, weisen
einen Parameter body auf. Dieser nimmt das zu sendende Objekt entgegen. Für die Übertragung
per HTTP wandelt der HttpClient es in ein JSON-Objekt um. Der Parameter options erhält ein
Objekt, das die HTTP-Anfrage näher beschreibt. Im oben gezeigten Beispiel verweist es auf die zu
sendenden Kopfzeilen sowie auf die zu verwendenden URL-Parameter.

Bitte beachten Sie auch, dass nicht jede Web-API alle hier beschriebenen Methoden unterstützt.

Zur Veranschaulichung erzeugt die folgende Methode einen neuen Flug.

1 createDemoFlight(): void {

2 const url = 'http://demo.ANGULARarchitects.io/api/flight';

3

4 const headers = new HttpHeaders().set('Accept', 'application/json');

5

6 const newFlight: Flight = {

7 id: 0,

8 from: 'Gleisdorf',

9 to: 'Graz',

10 date: new Date().toISOString()

11 };

12

13 this.http.post<Flight>(url, newFlight, { headers }).subscribe({

14 next: (flight) => {

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 23

15 console.debug('Neue Id: ', flight.id);

16 },

17 error: (err) => {

18 console.error('Error', err);

19 }

20 });

21 }

Das Beispiel geht davon aus, dass der erzeugte Flug samt der serverseitig vergebenen ID wieder
zurückgeliefert wird.

Falls Sie diese Methode ausprobieren möchten, können Sie sie im Konstruktor der Komponente
aufrufen (this.createDemoFlight()).

Templates und die Datenbindung

Nachdem wir nun die Logik unserer Komponente in der Klasse FlightSearchComponent ver-
staut haben, können wir uns ihrem Template zuwenden. Es handelt sich dabei um die Datei
flight-search.component.html.

Auf den ersten Blick handelt es sich hier um eine normale HTML-Datei. Neben HTML-Elementen
kann sie jedoch auch sogenannteDatenbindungsausdrücke beinhalten. Damit gleicht Angular den
Zustand der Komponente mit dem Zustand des Templates ab. Angular schreibt dazu beispielsweise
Daten aus der Komponente in das Template oder übernimmt Eingaben in entsprechende Kompo-
nenteneigenschaften.

Eine erste Art von Datenbindungsausdruck haben Sie in Kapitel 1 im Rahmen der AppComponent
bereits kennengelernt: Der Ausdruck

1 <h1>{{title}}</h1>

hat dort den Inhalt der Eigenschaft title ausgegeben.

Hier wollen wir nun auf weitere Arten der Datenbindung eingehen.

Two-Way-Binding

Beim Einsatz von Formularen gilt es häufig, Eigenschaften aus der Komponente mit Eingabefeldern
in der Anwendung abzugleichen: Die Werte der Eigenschaften sind also in Formularfelder zu über-
nehmen. Ändert der Anwender diese Felder, sind die neuen Werte in die jeweiligen Eigenschaften
zurückzuschreiben. Diese Aufgabe übernimmt Angular mit sogenannten Two-Way-Bindings.

Wenn Sie mit einem Two-Way-Binding beispielsweise die Eigenschaft from aus unserer
FlightSearchComponent an ein Eingabefeld binden wollen, müssen Sie in Angular folgende
Schreibweise nutzen:

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 24

1 <input [(ngModel)]="from" name="from">

Kommt input innerhalb eines form-Elements zum Einsatz, muss es auch ein name-Attribut
aufweisen. Angular nutzt diesen Wert zum Aufbau interner Datenstrukturen.

Damit Sie auf den ersten Blick erkennen, dass es sich hier um ein Two-Way-Binding handelt, nutzt
Angular eckige Klammern in Kombination mit runden. Die Community nennt diese Schreibkonven-
tion auch Banana-in-a-Box. Zugegeben, dieser Einsatz von Sonderzeichen wirkt zunächst ein wenig
seltsam. Allerdings hat sich das Angular-Team ganz bewusst für diese Schreibweise entschieden,
um die Art der Datenbindung offensichtlich zu machen.

Bei ngModel handelt es sich um eine sogenannte Direktive. Direktiven sind von Angular bereitge-
stellte DOM-Erweiterungen, die Verhalten zur Seite hinzufügen. Im Fall von ngModel besteht dieses
Verhalten im gewünschten Abgleich mit der angegebenen Eigenschaft. Gewissermaßen ist ngModel
ein Experte für Eingabefelder: Es weiß, wie es die verschiedenen Eingabefelder – darunter Textfelder,
Checkboxen, Radioboxen und Drop-down-Felder – mit den angegebenen Eigenschaften abgleichen
kann.

Damit ngModel zur Verfügung steht, muss das FormsModule in unser AppModule importiert werden:

1 // src/app/app.module.ts

2

3 [...]

4

5 // Diese Zeile einfügen:

6 import { FormsModule } from '@angular/forms';

7

8 @NgModule({

9 imports: [

10 // Diesen Eintrag hinzufügen:

11 FormsModule,

12 [...]

13],

14 declarations: [

15 [...]

16],

17 providers: [],

18 bootstrap: [

19 AppComponent

20]

21 })

22 export class AppModule { }

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 25

Two-Way-Data-Binding funktioniert nur mit ausgewählten Eigenschaften. Unter diesen
ist ngModel die einzige, die Angular ab Werk zur Verfügung steht. Sie können jedoch
eigene Eigenschaften, die Two-Way-Data-Binding unterstützen, entwickeln. Details dazu
finden Sie im nächsten Kapitel.

Property-Bindings

Ähnlich wie Two-Way-Bindings übernehmen Property-Bindings Eigenschaften aus der Komponen-
te in das Markup. Auch nach dem Aktualisieren der Eigenschaften in der Komponente aktualisiert
diese Binding-Art die Ausgabe. Allerdings schreibt sie Änderungen des Benutzers nicht mehr in die
Komponente zurück. Deswegen könnte man hier auch von One-Way-Bindings sprechen.

Um solch ein Binding einzurichten, nutzen Sie eckige Klammern:

1 <button [disabled]="!from || !to">Search</button>

Das hier betrachtete Beispiel bindet den Ausdruck !from || !to an die DOM-Eigenschaft disabled.
Der Ausdruck prüft, ob mindestens eine der beiden Eigenschaften leer ist. Das Beispiel deaktiviert
somit die Schaltfläche, wenn keine Werte für diese Eigenschaften vorliegen.

Das Beispiel zeigt auch, dass Angular sich an standardmäßig vorherrschende DOM-Eigenschaften
binden kann. Genau genommen, ist es aus Sicht von Angular egal, warum eine DOM-Eigenschaft
existiert. Sowohl Standardeigenschaften als auch eigene Eigenschaften wie ngModel im letzten
Abschnitt sowie DOM-Erweiterungen von anderen Bibliotheken lassen sich zusammen mit der
Datenbindung nutzen.

Eine weitere Schreibweise für One-Way-Bindings sieht den bereits diskutierten Einsatz geschweifter
Klammern vor:

1 <div>Es wurden {{ selectedFlight.length }} Flüge gefunden</div>

Damit platziert Angular eine Eigenschaft bzw. einen darauf basierenden Ausdruck mitten in der
Seite.

Direktiven

Wie bereits erwähnt, fügen Direktiven der Seite Verhalten hinzu. Dieses kann die Datenbindung
unterstützen. Ein Beispiel dafür ist die Direktive ngFor, die eine Auflistung iteriert und pro Eintrag
ein Stück HTML rendert:

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 26

1 <table class="table table-striped">

2 <tr *ngFor="let flight of flights">

3 <td>{{flight.id}}</td>

4 <td>{{flight.from}}</td>

5 <td>{{flight.to}}</td>

6 <td>{{flight.date}}</td>

7 </tr>

8 </table>

Im hier betrachteten Fall durchläuft ngFor sämtliche Flüge des Arrays flights aus der Komponente
des vorherigen Abschnitts. Pro Flug rendert sie eine Tabellenzeile. Bitte beachten Sie, dass in
Anlehnung an die for-of-Schleife in ECMAScript auch hier im Rahmen der Datenbindung das
Schlüsselwort of zu verwenden ist.

Der vorangestellte Stern (*ngFor) gibt darüber Auskunft, dass es sich beim Inhalt des aktuellen
Elements um ein sogenanntes Template handelt. Damit sind hier HTML-Fragmente gemeint, die
Angular zunächst gar nicht rendert und bei Bedarf einmal oder mehrere Male in die Seite einfügt.

1 <table class="table table-striped">

2 <tr *ngFor="let flight of flights"

3 [ngClass]="{ 'active': flight === selectedFlight }">

4

5 [...]

6

7 </tr>

8 </table>

Somit erhält die Tabellenzeile mit dem gerade ausgewählten Flug die Klasse active. Dieser Style
kann in der Datei flight-search.component.scss definiert werden:

1 .active {

2 background-color:darkorange

3 }

In diesem Fall gilt der Style nur für die FlightSearchComponent. Um ihn global zur Verfügung zu
stellen, ist er in die Datei src/styles.scss einzutragen.

Pipes

Ähnlich wie Direktiven unterstützen auch Pipes die Datenbindung. Sie sind in der Lage, Werte
beim Binden zu verändern, und lassen sich somit unter anderem für das Formatieren von Werten
nutzen. Zur Demonstration nutzt das folgende Beispiel die von Angular angebotene Pipe date zum
Formatieren des Datums:

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 27

1 <td>{{flight.date | date:'dd.MM.yyyy HH:mm'}}</td>

Eine weitere standardmäßig vorhandene Pipe, die vor allem Entwicklern hilft, ist die Pipe json. Sie
wandelt das gesamte Objekt in seine JSON-Repräsentation um. Somit können Entwickler Objekte
zum Testen ausgeben, ohne dafür eine Komponente oder Markup schreiben zu müssen:

1 Basket

2 <pre>{{ selectedFlight | json }}</pre>

Event-Bindings

Runde Klammern führen zu einer Bindung an Events. Dabei kann es sich sowohl um DOM-Events
als auch um Erweiterungen von Frameworks wie Angular handeln. Das hier betrachtete Beispiel
nutzt zwei Event-Bindings, um auf Mausklicks zu reagieren. Das eine Event-Binding verknüpft die
Schaltfläche Search mit der Komponentenmethode search:

1 <button (click)="search()" [disabled]="!from || !to">

2 Search

3 </button>

Das andere Event-Binding ruft für einen der dargestellten Flüge die Methode select auf, um ihn als
ausgewählten Flug vorzumerken:

1 <table class="table table-striped">

2 <tr *ngFor="let flight of flights"

3 [ngClass]="{ 'active': flight === selectedFlight }">

4 […]

5 <td><a (click)="select(flight)">Select</td>

6 </tr>

7 </table>

Verwenden Sie das folgende Styling in der Datei src/styles.scss, damit der Browser
auch für Anchor-Tags ohne href-Attribut den typischen Mauscursor für klickbare Links
(Zeigefingersymbol) anzeigt: a { cursor: pointer; }

Das gesamte Template Template

Der Vollständigkeit halber platzieren wir hier nochmal das gesamte Template für die
FlightSearchComponent, das wir in den vorangegangenen Abschnitten besprochen haben:

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 28

1 <!-- src/app/flight-search/flight-search.component.html -->

2

3 <h1>Flight Search</h1>

4

5 <div class="form-group">

6 <label>From:</label>

7 <input [(ngModel)]="from" class="form-control">

8 </div>

9 <div class="form-group">

10 <label>To:</label>

11 <input [(ngModel)]="to" class="form-control">

12 </div>

13

14 <div class="form-group">

15 <button class="btn btn-default" (click)="search()" [disabled]="!from || !to">

16 Search

17 </button>

18 </div>

19

20 <table class="table table-striped">

21

22 <tr *ngFor="let flight of flights"

23 [ngClass]="{ 'active': flight === selectedFlight }">

24 <td>{{flight.id}}</td>

25 <td>{{flight.from}}</td>

26 <td>{{flight.to}}</td>

27 <td>{{flight.date | date:'dd.MM.yyyy HH:mm'}}</td>

28 <td><a (click)="select(flight)">Select</td>

29 </tr>

30

31 </table>

32

33 Basket

34 <pre>{{ selectedFlight | json }}</pre>

Dabei fällt auf, dass die verwendeten Sonderzeichen, die bei ersten Schritten mit Angular durchaus
gewöhnungsbedürftig sind, uns beim Erkennen der gewählten Datenbindungsart unterstützen und
das Template somit nachvollziehbarer gestalten.

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 29

Komponenten einbinden

Nachdem wir nun eine erste eigene Komponente geschaffen haben, müssen wir sie nur noch in
unsere Anwendung einbinden. Damit die Angular-Anwendung unsere Komponente überhaupt
berücksichtigen kann, muss sie in einem Angular-Modul deklariert werden. In unserem Fall handelt
es sich dabei um das AppModule.

Diese Aufgabe sollte die CLI beim Generieren der Komponente schon übernommen haben. Aber
zur Sicherheit lohnt es sich, das zu überprüfen. Öffnen Sie dazu die Datei app.module.ts und
vergewissern Sie sich, dass die FlightSearchComponent unter declarations eingetragen ist:

1 // src/app/app.module.ts

2

3 [...]

4 import { AppComponent } from './app.component';

5 [...]

6

7 @NgModule({

8 imports: [

9 FormsModule,

10 HttpClientModule,

11 BrowserModule

12],

13 declarations: [

14 AppComponent,

15 SidebarComponent,

16 NavbarComponent,

17

18 // Unsere Komponente:

19 FlightSearchComponent

20],

21 providers: [],

22 bootstrap: [

23 AppComponent

24]

25 })

26 export class AppModule { }

Danach können wir die Komponente im Template der AppComponent aufrufen:

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 30

1 <div class="wrapper">

2

3 <div class="sidebar" data-color="white" data-active-color="danger">

4 <app-sidebar-cmp></app-sidebar-cmp>

5 </div>

6

7 <div class="main-panel">

8 <app-navbar-cmp></app-navbar-cmp>

9

10 <div class="content">

11

12 <!-- Alt: -->

13 <!-- <h1>{{title}}</h1> -->

14

15 <!-- Diese Zeile einfügen: -->

16 <app-flight-search></app-flight-search>

17

18 </div>

19 </div>

20

21 </div>

Anwendung starten

Gratulation! Sie haben Ihre erste Angular-Anwendung geschrieben, und es ist nun an der Zeit, sie
auszuführen.

Zum Starten Ihrer Anwendung nutzen Sie die Angular CLI im Projekthauptverzeichnis:

1 ng serve -o

Nach dem Start des Entwicklungswebservers steht die Anwendung unter http://localhost:4200 bereit:

http://localhost:4200

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 31

Ihre erste Komponente

Fehler in der Entwicklerkonsole entdecken

Verhält sich die Anwendung nicht wie gewünscht, sollten Sie einen Blick auf die Konsole in den Ent-
wicklerwerkzeugen (F12 oder Strg+Umschalt+I) werfen. Hier finden Sie häufig Fehlermeldungen:

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 32

Fehler in der Entwicklerkonsole

Der gezeigte Fehler wurde zur Veranschaulichung mit der Anweisung

1 throw new Error('Manfred braucht einen Kaffee!');

am Anfang der Methode search provoziert. In der Regel ist das jedoch nicht notwendig: Anwendun-
gen weisen häufig auch ohne weiteres Zutun Bugs auf ;-).

Bitte beachten Sie die Hyperlinks, die Angular im Rahmen der Fehlermeldung ausgibt. Diese
führen zu Zeilen in den betroffenen HTML-und TypeScript-Dateien, die beim Auftreten des Fehlers
durchlaufen wurden.

Bonus: Die Anwendung im Browser debuggen

In Fällen, in denen Sie die Ursache des Fehlers nicht finden, können Sie auch den in den Browser
integrierten JavaScript-Debugger einsetzen. Die Voraussetzung dafür ist, dass die CLI Metadaten
für den Debugger – sogenannte Source-Maps – generiert hat. Beim Einsatz von ng serve ist das
standardmäßig der Fall.

Bei Chrome finden Sie den Debugger in den Entwicklerwerkzeugen auf dem Registerblatt Sources:

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 33

JavaScript-Debugger in Chrome

Hier können Sie Ihre Programmdateien öffnen und durch einen Klick auf eine Zeilennummer auf
der linken Seite einen Break Point definieren. ZumÖffnen Ihrer Programmdateien empfiehlt sich die
Tastenkombination Strg+Umschalt+P. Diese öffnet einen Dialog, mit dem Sie nach der gewünschten
Datei suchen können. Geben Sie dazu einfach die ersten Buchstaben des Dateinamens ein.

Gelangt die Programmausführung zur Zeile mit dem Break Point, wird die Anwendung angehalten.
Danach können Sie mit den Schaltflächen links oben die Ausführung Schritt für Schritt fortsetzen
und z. B. die aktuellen Werte Ihrer Variablen und Eigenschaften einsehen.

Bonus: Debuggen mit Visual Studio Code

Etwas komfortabler lässt sich der in Chrome integrierte Debugger über Visual Studio Code bedienen.
Damit das möglich ist, müssen Sie das Visual-Studio-Code-Plug-in Debugger for Chrome installiert
haben.

Zum Starten des Debuggers via Visual Studio Code benötigen Sie die Datei .vscode/launch.json. Falls
sie noch nicht existiert, können Sie sie mit den folgenden Schritten einrichten:

1. Öffnen Sie eine beliebige .ts-Datei.
2. Wählen Sie in Visual Studio Code den Befehl Run/Start Debugging oder drücken Sie F5.
3. Falls Visual Studio Code Sie nach einer Umgebung (Environment) für das Debugging fragt,

wählen Sie Chrome aus.
4. Visual Studio Code generiert nun eine Datei launch.json und zeigt diese an.
5. Korrigieren Sie in der Datei launch.json die angezeigte URL auf http://localhost:4200:

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 34

1 {

2 "version": "0.2.0",

3 "configurations": [

4 {

5 "type": "chrome",

6 "request": "launch",

7 "name": "Launch Chrome against localhost",

8 "url": "http://localhost:4200",

9 "webRoot": "${workspaceFolder}"

10 }

11]

12 }

Wenn alle Stricke reißen, können Sie diese Datei auch manuell anlegen.

Um den Debugger nun via Visual Studio Code zu nutzen, sind die folgenden Schritte notwendig:

1. Starten Sie Ihre Anwendung wie gewohnt mit ng serve.
2. Erzeugen Sie direkt in Visual Studio Code durch einen Klick links neben eine Zeilennummer

einen Break Point:

Break Point in Visual Studio Code (Zeile 62)

Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff 35

3. Wählen Sie den Befehl Run/Start Debugging oder drücken Sie F5.
4. Nun öffnet sich Chrome.
5. Sobald der Programmfluss auf den Break Point stößt, hält der Debugger die Anwendung an.
6. Sie können den Debugger jetzt direkt aus Visual Studio Code heraus steuern, die Ausführung

Schritt für Schritt fortsetzen und die Werte von Variablen bzw. Eigenschaften einsehen.

Debuggen mit Visual Studio Code

Zusammenfassung

Angular-Anwendungen bestehen aus Komponenten. Hierbei handelt es sich um Klassen, die Infor-
mationen über Eigenschaften sowie das gewünschte Verhalten über Methoden anbieten. Dazugehö-
rige Templates definieren, wie Angular die Komponenten darstellt. Mit Datenbindungsausdrücken
stellen sie die Eigenschaften dar und verknüpfen Methoden mit UI-Ereignissen.

Wiederverwendbare
Sub-Komponenten und Services
In diesem Kapitel wollen wir unsere Lösung mit Boardmittel von Angular ein wenig verfeinern.
Dazu lagern wir wiederverwendbare UI-Fragmente in eine Sub-Komponente und eine wiederver-
wendbare Logik in einen Service aus.

Sub-Komponenten mit Event- und Property-Bindings

Jede Angular-Komponente kann weitere Komponenten in ihrem Template aufrufen. Zur Kommu-
nikation kommen dazu die aus dem letzten Kapitel bekannten Property- und Event-Bindings zum
Einsatz. Um dies zu veranschaulichen, kommt hier eine Sub-Komponente, die Flüge in Form von
Karten präsentiert zum Einsatz:

Die FlightCardComponent

Wiederverwendbare Sub-Komponenten und Services 37

Solche Karten sind derzeit sehr üblich, zumal sie ein flexibles (responsive) Design erlauben: Steht am
Endgerät viel Platz zur Verfügung, kann eine Anwendung mehrere Karten nebeneinander anzeigen.
Steht wenig Platz zur Verfügung, zeigt die Anwendung die Karten untereinander an.

Vorbereitungen

Jede Karte kann ausgewählt werden. Wurde sie ausgewählt, erhält sie einen beigen Hintergrund,
ansonsten einen weißen. Außerdem sollen alle ausgewählten Flüge im Warenkorb präsentiert
werden. Dazu wird der Warenkorb auf ein Objekt abgeändert, das die IDs der Flüge auf einen
boolean abbildet:

1 [...]

2 export class FlightSearchComponent implements OnInit {

3

4 from = 'Hamburg';

5 to = 'Graz';

6 flights: Array<Flight> = [];

7 selectedFlight: Flight | null = null;

8

9 basket: { [key: number]: boolean } = {

10 3: true,

11 5: true

12 };

13

14 [...]

15

16 }

Im gezeigten Beispiel befinden sich von Anfang an die Flüge 3 und 5 im Warenkorb. Das soll das
Ausprobieren unserer Anwendung ein wenig vereinfachen.

Der Datentyp von basket verdient unsere Aufmerksamkeit: { [key: number]: boolean } bedeutet,
dass es sich hierbei um einObjekt handelt, das Schlüssel vomTyp number aufWerte vomTyp boolean
abbildet. Das Objekt wird also als Dictionary verwendet.

Falls Ihnen die hier verwendete Schreibweise zu unübersichtlich ist, können Sie auch in
einem vorgelagerten Schritt einen Typ für das Dictionary definieren und dann basket

damit typisieren:

1 type NumberBooleanDict = { [key: number]: boolean };

2

3 [...]

4

Wiederverwendbare Sub-Komponenten und Services 38

5 export class FlightSearchComponent implements OnInit {

6 [...]

7 basket: NumberBooleanDict = {

8 3: true,

9 5: true

10 }

11 [...]

12 }

Um festzustellen, ob sich ein Flug imWarenkorb befindet, muss die Anwendung also nur prüfen, ob
der Basket an der Stelle der FlugId truthy ist:

1 const inBasket = this.basket[7]; // 7 ist eine FlugId.

Zur Visualisierung desWarenkorbs kommt aus Gründen der Vereinfachung abermals die JSON-Pipe
zum Einsatz:

1 {{ basket | json }}

Das Ganze gestaltet sich dann, wie nachfolgend gezeigt:

Ausgabe des Warenkorbs

Eine Komponente mit Property-Bindings Property-Binding

Die hier besprochene Karte, deren Implementierung im nächsten Abschnitt folgt, soll über Property-
Bindings zwei Informationen vom Parent übergeben bekommen: den anzuzeigenden Flug und
die Information, ob sie ausgewählt wurde. Für die erste Information weist die Komponente eine
Eigenschaft item und für zweite Information eine Eigenschaft selected auf:

Wiederverwendbare Sub-Komponenten und Services 39

1 <div *ngFor="let f of flights">

2 <app-flight-card [item]="f" [selected]="basket[f.id]">

3 </app-flight-card>

4 </div>

Um alle gefundenen Flüge auszugeben, iteriert das betrachtete Beispiel über die Auflistung flights
und gibt pro Eintrag eine Karte aus.

So können Sie sich das Einbinden einer Komponente wie den Aufruf einer Funktion vorstellen,
die Parameter übergeben bekommt und ein Stück UI rendert. Eine andere Metapher für eine
Komponente ist ein elektronisches Bauteil, z. B. ein Chip: Er ist über Eingänge mit der Außenwelt
verdrahtet und bekommt auf diese Weise die nötigen Informationen:

Die Komponente flight-card nimmt Informationen über Eigenschaften entgegen.

Im hier betrachteten Fall nimmt der Eingang item den jeweiligen Flug entgegen, und der Eingang
selected bekommt den entsprechenden boolean aus dem Warenkorb.

Implementierung der Komponente mit Property-Bindings

Unsere Komponente wird wieder mit der Angular CLI generiert:

1 ng g c flight-card

Alternativ dazu lässt sich, wie im letzten Kapitel gezeigt, das Visual-Studio-Plug-in Angular
Schematics dafür nutzen. Es richtet für diese Aufgabe im Kontextmenü der einzelnen Ordner einen
Befehl Angular: Generate a component ein.

Die Implementierung unserer flight-card besteht zunächst mal aus einer Klasse mit einem
Component-Dekorator:

Wiederverwendbare Sub-Komponenten und Services 40

1 // src/app/flight-card/flight-card.component.ts

2

3 import { Component, Input } from '@angular/core';

4 import { Flight } from '../flight';

5

6 @Component({

7 selector: 'app-flight-card',

8 templateUrl: './flight-card.component.html',

9 styleUrls: ['./flight-card.component.scss']

10 })

11 export class FlightCardComponent {

12

13 @Input() item: Flight | null = null;

14 @Input() selected = false;

15

16 select() {

17 this.selected = true;

18 }

19

20 deselect() {

21 this.selected = false;

22 }

23

24 }

Der Dekorator erhält einen Selektor sowie einen Verweis auf ein Template. Den von der CLI
generierten Konstruktor sowie die Implementierung von OnInit haben wir entfernt, da sie hier nicht
benötigt werden.

Bis hierhin bietet diese Implementierung nichts Neues. Neu ist allerdings der Input-Dekorator. Er
dekoriert sämtliche Eigenschaften, die die Komponente von ihrem Parent entgegennimmt.

Außerdem weist sie zwei Methoden auf, die ihr Template aufruft: select wählt die Karte aus, und
deselect hebt diese Auswahl wieder auf.

Das Template dieser Komponente prüft zunächst, ob die Karte selektiert wurde. Ist dem so, erhält
die Karte per ngClass eine entsprechende Formatierung:

Wiederverwendbare Sub-Komponenten und Services 41

1 <!-- src/app/flight-card/flight-card.component.html -->

2

3 <div class="card" [ngClass]="{ 'active-card' : selected }">

4

5 <div class="card-header">

6 <h2 class="title">{{item?.from}} - {{item?.to}}</h2>

7 </div>

8

9 <div class="card-body">

10 <p>Flight-No.: #{{item?.id}}</p>

11 <p>Date: {{item?.date | date:'dd.MM.yyyy HH:mm'}}</p>

12 <p>

13 <button class="btn btn-default"

14 *ngIf="!selected"

15 (click)="select()">Select</button>

16

17 <button class="btn btn-default"

18 *ngIf="selected"

19 (click)="deselect()">Remove</button>

20 </p>

21 </div>

22

23 </div>

Das Template gibt danach ein paar Daten des aktuellen Flugs aus. Bitte beachten Sie die Nutzung
des Safe-Navigation-Operators (Fragezeichen): Statt item.id kommt hier zum Beispiel item?.id
zum Einsatz. Das ist notwendig, weil die Eigenschaft item initial null ist und null.id im Strict
Mode nicht erlaubt ist. Stattdessen veranlasst der Safe-Navigation-Operator Angular, die Navigation
abzubrechen und null zurückzuliefern.

Das Styling für die Klasse active-card kann wieder lokal in die Datei flight-card.component.scss
oder global in die Datei styles.scss eingetragen werden:

1 .active-card {

2 background-color: rgb(204, 197, 185);

3 }

Diese Farbe wurde so gewählt, dass sie zum verwendeten Theming passt. Die anderen hier
verwendeten Klassen werden von der eingebundenen Styling-Bibliothek Bootstrap definiert.

Komponente registrieren und aufrufen

Auch diese Komponente muss bei einem Angular-Modul registriert werden. In unserem Fall handelt
es sich um das AppModule. Normalerweise kümmert sich die CLI automatisch darum. Zur Sicherheit
empfiehlt es sich jedoch, diesen Umstand zu prüfen:

Wiederverwendbare Sub-Komponenten und Services 42

1 // src/app/app.module.ts

2

3 [...]

4 import { FlightCardComponent } from './flight-card/flight-card.component';

5

6 @NgModule({

7 imports: [

8 [...]

9],

10 declarations: [

11 [...]

12 FlightCardComponent

13],

14 providers: [],

15 bootstrap: [

16 AppComponent

17]

18 })

19 export class AppModule { }

Danach erhält das gesamte Modul Zugriff auf die Komponente und lässt sich zur Präsentation
gefundener Flüge in der FlightSearchComponent verwenden:

1 <div *ngFor="let f of flights">

2 <app-flight-card [item]="f" [selected]="basket[f.id]">

3 </app-flight-card>

4 </div>

Wie besprochen, erhält diese Komponente den aktuellen Flug und den Boolean aus demWarenkorb.
Die Anwendung sollte nun die gefundenen Flüge als Karten präsentieren.

Die Karten lassen sich auch über die präsentierten Schaltflächen aus- und abwählen. Ein kleines
Problem fällt dabei allerdings auf: Angular aktualisiert die Eigenschaft basket und somit den
präsentierten Warenkorb am Ende der Seite nicht. Hierzu müsste die FlightCardComponent ihren
Parent, der den Warenkorb verwaltet, mit einem Ereignis benachrichtigen. Wie das geht, erläutert
der nächste Abschnitt.

Bonus: Responsive Design mit dem Bootstrap Grid Layout

Falls Sie dieses Beispiel nachstellen, fällt Ihnen gegebenenfalls auf, dass die einzelnen Karten sehr
viel Platz benötigen:

Wiederverwendbare Sub-Komponenten und Services 43

Um mehrere Karten nebeneinander zu präsentieren, kann man zum Spaltenlayout von Bootstrap
Bootstrap greifen. Es ist für responsive Designs gedacht – also für Designs, die sich an unter-
schiedliche Auflösungen anpassen. Dazu unterteilt es eine Seite in zwölf gedachte Spalten, und die
Anwendung weist jedem Element eine bestimmte Anzahl an Spalten zu. Dabei kann es zwischen
sehr kleinen (extra small, xs), kleinen (small, sm), mittleren (medium, md), großen (large, lg) und
sehr großen (extra large, xl) Bildschirmen unterscheiden. Beispiele für diese Größeneinheiten sind
Handys (xs), Tablets (sm und md) sowie Laptops und Desktopgeräte (lg und xl). Hierbei handelt es
sich jedoch nur um Näherungen, denn schlussendlich kommt es auf die zur Verfügung stehende
Auflösung an.

Beispielsweise könnte man nun angeben, dass eine Karte bei sehr kleinen Geräten (xs) alle zwölf
Spalten erhält, bei kleinen (sm) sechs, bei mittleren (md) sowie bei großen (lg) vier und bei sehr
großen (lg und xl) drei der insgesamt zwölf Spalten. Somit werden je nach Auflösung eine bis vier
Karten nebeneinander präsentiert. Hierzu sieht Bootstrap die nachfolgend verwendeten Klassen vor:

Wiederverwendbare Sub-Komponenten und Services 44

1 <div class="row">

2 <div *ngFor="let f of flights"

3 class="col-xs-12 col-sm-6 col-md-4 col-lg-4 col-xl-3">

4 <app-flight-card [item]="f" [selected]="basket[f.id]">

5 </app-flight-card>

6 </div>

7 </div>

Jede dieser Klassen, die mit dem Präfix col- eingeleitet werden, gibt für eine Auflösung die
gewünschte Spaltenanzahl an. Beispielsweise bedeutet col-md-4, dass eine Karte bei einemmittleren
Gerät vier der zwölf Spalten erhält.

Außerdem sind die einzelnen Spalten in einen Container, z. B. ein div, mit der Klasse row zu
platzieren. Sie kümmert sich darum, dass bei Bedarf eine neue Zeile mit Flugkarten begonnen wird.

Das Ergebnis dieses Vorgehens sieht bei einem Bildschirm mit der Auflösung lg wie folgt aus:

Komponenten mit Event-Bindings Event-Binding

Dieser Abschnitt erweitert die hier gezeigte FlightCardComponent um ein Ereignis selectedChange.
Dieses Ereignis soll den Parent informieren, wenn die Karte aus- bzw. abgewählt wird:

Wiederverwendbare Sub-Komponenten und Services 45

1 <div *ngFor="let f of flights">

2 <app-flight-card [item]="f"

3 [selected]="basket[f.id]"

4 (selectedChange)="basket[f.id] = $event">

5 </app-flight-card>

6 </div>

Das Event selectedChange werden wir gleich einführen. Warten Sie bis dahin bitte mit dem hier
gezeigten Aufruf, um Kompilierungsfehler zu vermeiden.

Man könnte sich diese eine Komponente als Funktion vorstellen, die einen Callback selectedChange
übergeben bekommt. Immer wenn sie aus- bzw. abgewählt wird, ruft sie diesen Callback auf.

Die Metapher mit dem Chip passt hier noch besser: Ein Chip hat Ein- und Ausgänge, über die er mit
seiner Umgebung verdrahtet wird. Die Ausgänge entsprechen den Events. Im hier betrachteten Fall
fließt der Wert selected über einen Ausgang zurück in den Warenkorb:

Komponente mit Eingängen (Properties) und einem Ausgang (Event)

Implementierung der Komponente mit Event-Binding

Für das Event erhält die FlightCardComponent eine Eigenschaft selectedChange, die Sie mit Output
dekorieren müssen:

Wiederverwendbare Sub-Komponenten und Services 46

1 // src/app/flight-card/flight-card.component.ts

2

3 import { Component, Input, Output, EventEmitter } from '@angular/core';

4 import { Flight } from '../flight';

5

6 @Component({

7 selector: 'app-flight-card',

8 templateUrl: './flight-card.component.html',

9 styleUrls: ['./flight-card.component.scss']

10 })

11 export class FlightCardComponent {

12

13 @Input() item: Flight | null = null;

14 @Input() selected = false;

15 @Output() selectedChange = new EventEmitter<boolean>();

16

17 select() {

18 this.selected = true;

19 this.selectedChange.emit(true);

20 }

21

22 deselect() {

23 this.selected = false;

24 this.selectedChange.emit(false);

25 }

26

27 }

Der Typ des Output ist per definitionem ein EventEmitter. Da es mehrere Typen mit diesem allge-
meinenNamen gibt, sollten Sie sich vergewissern, dass Sie den Typ EventEmitter aus @angular/core
importieren. Gerade beim Einsatz von Auto-Imports schlagen Entwicklungsumgebungen wie Visual
Studio Code häufig den falschen Paketnamen vor.

Damit der EventEmitter den neuen Wert von selected veröffentlichen kann, wird er mit Boolean
typisiert.

Komponente aufrufen

Nach dieser Erweiterung können Sie mit demAufruf der FlightCardComponent einen Event-Handler
für selectedChange festlegen:

Wiederverwendbare Sub-Komponenten und Services 47

1 <div class="row">

2 <div

3 *ngFor="let f of flights"

4 class="col-xs-12 col-sm-6 col-md-4 col-lg-4 col-xl-3">

5

6 <app-flight-card

7 [item]="f"

8 [selected]="basket[f.id]"

9 (selectedChange)="basket[f.id] = $event">

10 </app-flight-card>

11

12 </div>

13 </div>

Die von Angular eingerichtete Variable $event beinhaltet den an emit übergebenen Wert, also
true oder false. Die Anwendung sollte nun beim Aus- und Abwählen einer Karte den Warenkorb
aktualisieren:

Der Warenkorb wird nun aktualisiert.

Wiederverwendbare Sub-Komponenten und Services 48

Komponenten mit Two-Way-Bindings

Wir haben eine gute Nachricht: Unsere Input/Output-Kombination von selected und
selectedChange erfüllt sämtliche Konventionen für die verkürzte Banana-in-a-Box-Schreibweise.
Das Event setzt sich aus dem Namen der Property sowie aus dem Suffix Change zusammen und
veröffentlicht den geänderten Wert via $event. Insofern spricht hier nichts gegen den Einsatz dieser
komfortablen Grammatik:

1 <div class="row">

2 <div

3 *ngFor="let f of flights"

4 class="col-xs-12 col-sm-6 col-md-4 col-lg-4 col-xl-3">

5

6 <app-flight-card

7 [item]="f"

8 [(selected)]="basket[f.id]">

9 </app-flight-card>

10

11 </div>

12 </div>

Die Grammatik für Two-Way-Bindings ist tatsächlich nur eine Schreiberleichterung, die Angular in
Fällen, wo die diese Konventionen erfüllt sind, ermöglicht.

Wiederverwendbare Logik in Services auslagern

Bis jetzt haben wir sämtliche Programmlogiken in Komponenten untergebracht. Möchte man
jedoch dieselben Routinen in mehreren Komponenten nutzen, gilt es, sie an eine zentrale Stelle
auszulagern. Hierfür bietet Angular das Konzept der Services an. Dabei handelt es sich häufig um
wiederverwendbare Klassen.

Dieser Abschnitt zeigt, wie Sie eigene Services schreiben und via Dependency Injection nutzen
können.

Ein erster Service

Unsere FlightSearchComponent kümmert sich derzeit direkt um das Abrufen von Flügen via HTTP.
Allerdings ist es naheliegend, dass künftig auch weitere Komponenten die gleichen Serverzugriffe
benötigen. Deswegen ist es üblich, solche Aufgaben in eigene Services auszulagern.

Genau das wird auch unsere erste Aufgabe in diesem Kapitel sein. Ähnlich wie Komponenten lassen
sich Servicegenerieren generierenServices mit der Angular CLI generieren. Führen Sie dazu den
folgenden Befehl im Hauptverzeichnis Ihres Projekts aus:

Wiederverwendbare Sub-Komponenten und Services 49

1 ng generate service flight

Die Anweisung zum Generieren eines Service lässt sich auch abkürzen:

1 ng g s flight

Außerdem können Sie Services über das Kontextmenü eines Ordners in Visual Studio Code erzeugen,
sofern Sie das Plug-in Angular Schematics installiert haben:

Dieser Befehl veranlasst die CLI, zwei Dateien zu generieren:

Wiederverwendbare Sub-Komponenten und Services 50

Service mit der CLI generieren

Die generierte Datei flight.service.ts enthält das Grundgerüst unseres neuen FlightService:

1 // src/app/flight.service.ts

2

3 import { Injectable } from '@angular/core';

4

5 @Injectable({

6 providedIn: 'root'

7 })

8 export class FlightService {

9

10 constructor() { }

11 }

Die Konfiguration von Services nennt man auch ProviderProvider oder Serviceprovider. Wird der
Service wie hier über Eigenschaften von Injectable konfiguriert, ist auch von Tree-Shakable Provi-
der die Rede. Der Name rührt daher, dass solche Provider gut mit einer Optimierungstechnik namens
Tree-Shaking zusammenspielen. Diese Technik entfernt beim Kompilieren alle nicht benötigten
Framework-Bestandteile und trägt somit zu kleineren Bundles bei. Die Angular CLI kümmert sich
übrigens automatisch um diese Aufgabe, wenn Sie Ihre Bundles mit ng build bauen lassen.

Beim gezeigten Beispiel handelt es sich lediglich um eine Klasse mit einem Injectable-Dekorator.
Aufgrund dieses Dekorators weiß Angular, dass wir diese Klasse als Service nutzen wollen.

Die Eigenschaft providedIn gibt den Scope des Service an. Anders ausgedrückt: providedIn sagt uns,
wo in der Anwendung der Service zur Verfügung steht. In der Regel werden Sie auf die folgenden
beiden Optionen stoßen:

• root (String): Der String root root gibt an, dass der FlightService in der gesamtenAnwendung
zur Verfügung steht. Man spricht hierbei auch vom Root-Scope. Sie werden diese Option in den
meisten Fällen wählen.

Wiederverwendbare Sub-Komponenten und Services 51

• Verweis auf ein lazy Angular-Modul: Eine Anwendung kann angewiesen werden, ein
Angular-Modul erst bei Bedarf in den Browser zu laden. Hierbei ist von lazy loading die Rede.
Verweist providedIn auf so ein Modul, wird der Service gemeinsammit diesemModul geladen
und kann deswegen auch nur innerhalb dieses Moduls genutzt werden.

Es ergibt übrigens keinen Sinn, providedIn auf ein Modul, das nicht per Lazy Loading
bezogen wird, verweisen zu lassen. Diese Module, die von Anfang an zur Verfügung
stehen, teilen sich nämlich den Root-Scope. Insofern hätte dieses Vorgehen denselben
Effekt wie providedIn: root.

Lassen Sie uns nun dem FlightService eine Methode find zum Suchen nach Flügen spendieren:

1 // src/app/flight.service.ts

2

3 import { HttpClient, HttpHeaders, HttpParams } from '@angular/common/http';

4 import { Injectable } from '@angular/core';

5 import { Observable } from 'rxjs';

6 import { Flight } from './flight';

7

8 @Injectable({

9 providedIn: 'root'

10 })

11 export class FlightService {

12

13 constructor(private http: HttpClient) { }

14

15 find(from: string, to: string): Observable<Flight[]> {

16 const url = 'http://demo.ANGULARarchitects.io/api/flight';

17

18 const headers = new HttpHeaders()

19 .set('Accept', 'application/json');

20

21 const params = new HttpParams()

22 .set('from', from)

23 .set('to', to);

24

25 return this.http.get<Flight[]>(url, {headers, params});

26 }

27 }

ImWesentlichen entspricht diese neue Methode dem Aufbau der Methode search, die wir in Kapitel
3 direkt in der FlightSearchComponent platziert haben. Beachten Sie bitte die folgenden Punkte:

Wiederverwendbare Sub-Komponenten und Services 52

• Der FlightService lässt sich den HttpClient injizieren. Services können demnach auch
weitere Services via Dependency Injection anfordern.

• Die Methode find liefert das Ergebnis von this.http.get als Observable<Flight> zurück. Das
bedeutet, dass der Aufrufer von find bei diesem Observable die Methode subscribe aufrufen
muss, um die abgerufenen Flüge in Empfang zu nehmen.

Den Service konsumieren

Nun können wir unseren FlightService in der FlightSearchComponent nutzen:

1 // src/app/flight-search/flight-search.component.ts

2

3 import { Component, OnInit } from '@angular/core';

4 import { Flight } from '../flight';

5 import { FlightService } from '../flight.service';

6

7 @Component({

8 selector: 'app-flight-search',

9 templateUrl: './flight-search.component.html',

10 styleUrls: ['./flight-search.component.scss']

11 })

12 export class FlightSearchComponent implements OnInit {

13

14 from = 'Hamburg';

15 to = 'Graz';

16 flights: Array<Flight> = [];

17 selectedFlight: Flight | null = null;

18

19 basket: { [key: number]: boolean } = {

20 3: true,

21 5: true

22 };

23

24 constructor(private flightService: FlightService) {

25 }

26

27 ngOnInit(): void {

28 }

29

30 search(): void {

31

32 this.flightService.find(this.from, this.to).subscribe({

Wiederverwendbare Sub-Komponenten und Services 53

33 next: (flights) => {

34 this.flights = flights;

35 },

36 error: (err) => {

37 console.debug('Error', err);

38 }

39 });

40

41 }

42

43 select(f: Flight): void {

44 this.selectedFlight = f;

45 }

46

47 }

Die aktualisierte FlightSearchComponent lässt sich den FlightService in den Konstruktor injizieren.
Die Methode search verwendet diesen FlightService zum Abrufen von Flügen.

Der zuvor injizierte HttpClient wird nicht mehr benötigt. Deswegen wurde seine Verwendung aus
der FlightSearchComponent ersatzlos entfernt. Das betrifft auch die im letzten gezeigte Demome-
thode createDemoFlight, die zur Veranschaulichung einen neuen Flug erzeugt.

Gratulation! Sie haben Ihren ersten Service mit wiederverwendbarer Logik geschrieben und in einer
Komponente verwendet.

Zusammenfassung

Angular bietet einige Building-Blocks zur Schaffung wiederverwendbarer Anwendungsteile: (Sub-
)Komponenten weisen wiederverwendbare UI-Fragmente auf und kommunizieren mit ihren Eltern-
Komponenten über Property- und Event-Bindings. Diese sind mit den Dekoratoren @Input und
@Output zu kennzeichnen. Services kapseln hingegen wiederverwendbare Logiken und lassen sich
in andere Services und Komponenten injizieren.

Navigationsstrukturen schaffen: Der
Angular Router
Eine Single Page Application (SPA) besteht, wie der Name schon ausdrückt, aus nur einer Seite. Um
verschiedene Anwendungsfälle anbieten zu können, müssen wir verschiedene Seiten simulieren.
Das erfolgt durch das Ein- und Ausblenden von Komponenten. Der Angular-Router hilft bei dieser
Aufgabe.

Dieses Kapitel ergänzt unser Beispiel, sodass es unter Nutzung des Angular-Routers mehrere An-
sichten präsentiert. Diese sogenannten Routen lassen sich über einzelne Menüeinträge einblenden.

Überblick

Wenn eine SPA mehrere Seiten simulieren soll, reicht es nicht, einfach nur Komponenten ein- und
auszublenden. Damit der Back-Button so funktioniert, muss sich der durchgeführte Zustandswech-
sel in der URLwiderspiegeln. Dasselbe gilt für Bookmarks oder Links, die auf eine bestimmteAnsicht
der SPA verweisen. Glücklicherweise automatisiert der Router auch diese Aufgabe, dieman ebenfalls
als Deep Linking Deep Linking bezeichnet: Er spendiert jeder Route eine eigene URL.

Der Router, der im Lieferumfang von Angular enthalten ist, sieht vor, dass die SPA neben konkreten
Bereichen, wie Menüs oder Fußzeilen, auch einen Platzhalter aufweist:

SPA mit Platzhalter für das Routing

Um festzulegen, welche Komponente der Router in diesem Platzhalter positionieren soll, hängt der
Aufrufer einen zusätzlichen Pfad an die URL an. Dieser Pfad verweist auf einen Konfigurationsein-

Navigationsstrukturen schaffen: Der Angular Router 55

trag, der unter anderem die Komponente bekannt gibt. Man sagt auch, dass der Router die adressierte
Komponente aktiviert:

Aktivieren von Komponenten mit dem Angular-Router

Hier wurde an die URL der SPA der Pfad /flug-suchen angehängt. Das veranlasst den Router, die
damit assoziierte FlightSearchComponent zu aktivieren.

Komponenten für das Routing einrichten

Um die Funktionsweise des Routers zu veranschaulichen, werden wir endlich die Menübefehle auf
der linken Seite an unsere Bedürfnisse anpassen und mit Leben erfüllen:

Navigationsstrukturen schaffen: Der Angular Router 56

Der Router hat die FlightSearchComponent in den Platzhalter geladen

Der Platzhalter befindet sich in dieser Anwendung rechts vom Seitenmenü. Er soll abhängig vom
Anwendungszustand eine der folgenden Komponenten anzeigen:

• HomeComponent: Zeigt eine Begrüßung an.
• FlightSearchComponent: Unsere Komponente zum Suchen nach Flügen.
• PassengerSearchComponent: Komponente zum Suchen nach Passagieren. Vorerst handelt es
sich dabei lediglich um eine Dummy-Komponente, die als weiteres Routing-Ziel fungiert.

• FlightEditComponent: Komponente zumEditieren von Flügen. Auch hierbei handelt es sich um
eine Dummy-Komponente, die als weiteres Routing-Ziel zum Einsatz kommt. Anders als bei
der PassengerSearchComponent nehmenwir hier allerdings einen Routing-Parameter entgegen.

• AboutComponent: Zeigt allgemeine Informationen zur Anwendung.
• NotFoundComponent: Wird angezeigt, wenn die gewünschte Route nicht gefunden wurde.

Diese – bis auf die FlightSearchComponent – neuen Komponenten können Sie wie gewohnt mit der
Angular CLI erzeugen:

Navigationsstrukturen schaffen: Der Angular Router 57

1 ng generate component home

2 ng generate component passenger-search

3 ng generate component flight-edit

4 ng generate component about

5 ng generate component not-found

Bitte beachten Sie, dass die zweite Anweisung die PassengerSearchComponent im Ordner flight-
booking erzeugt. Darin befindet sich unser FlightBookingModule, bei dem die CLI die Komponente
auch registriert. Alle anderen Komponenten erzeugt die CLI im Ordner app und registriert sie bei
der sich dort befindlichen AppComponent.

Anstatt die CLI auf der Konsole zu nutzen, können Sie auch auf das bereits besprochene Plug-in
Angular Schematics in Visual Studio Code zurückgreifen.

Prüfen Sie zur Sicherheit, ob die Angular CLI die generierten Komponenten erfolgreich
beim AppModule registriert hat.

Da unsere Benutzer eine ordentliche Begrüßung verdienen, haben wir das Template der
HomeComponent entsprechend abgeändert:

1 <!-- src/app/home/home.component.html -->

2 <h1>Welcome!</h1>

Routing-Konfiguration einrichten

Damit der Router weiß, wann welche Komponente zu aktivieren ist, stellen wir ihm im Ord-
ner src/app die Datei app.routes.ts mit einer Routing-Konfiguration für die Komponenten im
AppModule bereit.

Bei einer RouterKonfiguration Konfiguration Routing-Konfiguration handelt es sich um eine her-
kömmliche TypeScript-Datei, die sich direkt in Visual Studio Code erzeugen lässt (Rechtsklick auf
den Ordner app | New File). Darin befindet sich eine Array-Konstante mit Objekten vom Typ Route,
die in erster Linie Pfade auf Komponenten abbilden:

Navigationsstrukturen schaffen: Der Angular Router 58

1 // src/app/app.routes.ts

2

3 import { Routes } from '@angular/router';

4 import { HomeComponent } from './home/home.component';

5 import { FlightSearchComponent } from './flight-search/flight-search.component';

6 import { PassengerSearchComponent }

7 from './passenger-search/passenger-search.component';

8 import { FlightEditComponent } from './flight-edit/flight-edit.component';

9 import { AboutComponent } from './about/about.component';

10 import { NotFoundComponent } from './not-found/not-found.component';

11

12 export const APP_ROUTES: Routes = [

13 {

14 // Standardroute: Umleitung auf '/home'

15 path: '',

16 redirectTo: 'home',

17 pathMatch: 'full'

18 },

19 {

20 path: 'home',

21 component: HomeComponent

22 },

23 {

24 path: 'flight-search',

25 component: FlightSearchComponent

26 },

27 {

28 path: 'flight-edit/:id',

29 component: FlightEditComponent

30 },

31 {

32 path: 'passenger-search',

33 component: PassengerSearchComponent

34 },

35 {

36 path: 'about',

37 component: AboutComponent

38 },

39 {

40 path: '**',

41 component: NotFoundComponent

42 }

43];

Navigationsstrukturen schaffen: Der Angular Router 59

Etwas Aufmerksamkeit verdient hier die erste Route: Diese weist keinen Pfad auf und fungiert
deswegen als Standardroute. Angular aktiviert sie, wenn der Aufrufer keinen Pfad an die URL der
SPA anhängt. Ein Beispiel dafür ist http://localhost:4200. Mit redirectTo leitet die Standardroute
auf die darunter definierte home-Route weiter.

Eine kleine Herausforderung gibt es jedoch bei solchen Routen: Standardmäßig prüft Angular nur,
ob der Pfad in der Konfiguration (z. B. path: myRoute) ein Präfix des Pfads in der URL ist (z. B.
http://localhost:4200/myRoute/something-else). Dummerweise sieht JavaScript einen Leerstring als
Präfix aller anderen Strings an. Somit würde der Router die Standardroute mit leerem Pfad immer
heranziehen.

Die Lösung für dieses Problem ist die Eigenschaft pathMatch: full. In diesem Fall vergleicht Angular
den gesamten Pfad aus der Konfiguration mit dem gesamten Pfad in der URL.

Eventuell haben Sie auch die Endung :id im Pfad der FlightEditComponent entdeckt. Hierbei
handelt es sich um einen Platzhalter mit dem Namen id. Den übergebenen Wert können wir später
in der FlightEditComponent auslesen.

Die Einstellung path: ** im letzten Eintrag bewirkt, dass sämtliche weiteren Pfade zur
NotFoundComponent führen. Damit schaffen wir ein letztes Auffangnetz.

Damit Angular diese Konfiguration aufgreift, ist sie gemeinsam mit dem RouterModule ins
AppModule zu importieren:

1 // src/app/app.module.ts

2

3 [...]

4 // Diese beiden Importe einfügen:

5 import { RouterModule } from '@angular/router';

6 import { APP_ROUTES } from './app.routes';

7

8 @NgModule({

9 imports: [

10 // Diese Zeilen hinzufügen:

11 RouterModule.forRoot(APP_ROUTES),

12 [...]

13],

14 declarations: [

15 [...]

16],

17 providers: [],

18 bootstrap: [

19 AppComponent

20]

21 })

22 export class AppModule { }

http://localhost:4200
http://localhost:4200/myRoute/something-else

Navigationsstrukturen schaffen: Der Angular Router 60

Bitte beachten Sie, dass wir hier die Routing-Konfiguration an RouterModule.forRoot übergeben.
Da diese Methode systemweite Services einrichtet, darf sie nur im AppModule aufgerufen werden.

Platzhalter in AppComponent hinterlegen

Anstatt auf eine konkrete Komponente zu verweisen, nutzt die AppComponent nun einen Platzhalter.
Dieser repräsentiert der Router durch ein router-outlet-Element:

1 <!-- src/app/app.component.html -->

2

3 <div class="wrapper">

4

5 <div class="sidebar" data-color="white" data-active-color="danger">

6 <app-sidebar-cmp></app-sidebar-cmp>

7 </div>

8

9 <div class="main-panel">

10 <app-navbar-cmp></app-navbar-cmp>

11

12 <div class="content">

13

14 <!-- Diese Zeile entfernen: -->

15 <!-- <app-flight-search></app-flight-search> -->

16

17 <!-- Diese Ziele hinzufügen: -->

18 <router-outlet></router-outlet>

19

20 </div>

21 </div>

22

23 </div>

Hyperlinks zum Aktivieren von Routen nutzen

Nun benötigen wir nur noch Hyperlinks, die die einzelnen Routen im Platzhalter aktivieren. Dazu
passen wir die generierte SidebarComponent an:

Navigationsstrukturen schaffen: Der Angular Router 61

1 <!-- src/app/sidebar/sidebar.component.html -->

2

3 [...]

4

5 <!-- Diese Einträge um routerLink -->

6 <!-- und routerLinkActive erweitern: -->

7 <li routerLinkActive="active">

8

9 <p>Home</p>

10

11

12

13 <li routerLinkActive="active">

14

15 <p>Flights</p>

16

17

18

19 <li routerLinkActive="active">

20

21 <p>Passengers</p>

22

23

24

25 <!-- Diesen Eintrag ergänzen: -->

26 <li routerLinkActive="active">

27

28 <p>About</p>

29

30

Die aus dem RouterModule stammende Direktive routerLink verweist auf die Pfade der konfigurier-
ten Routen. Die Direktive routerLinkActive verweist hingegen auf eine Klasse, mit deren Stylings
der aktive Menüpunkt hervorgeben wird. Standardmäßig weist sie die Klasse dem Element zu, wenn
das Element einen aktiven routerLink aufweist oder dies auf ein Child-Element zutrifft.

Wenn Sie nun Ihre Anwendung starten, sollten die Menüeinträge auf der linken Seite auf die
einzelnen Routen verweisen:

Navigationsstrukturen schaffen: Der Angular Router 62

Routing in der Demoanwendung

Die aktuelle Route wird nun auch durch die URL in der Adresszeile widergespiegelt.

Routen-Parameter auslesen

Um den für flight-edit konfigurierten Routing-Parameter auslesen zu können, fordert die
FlightEditComponent den Service ActivatedRoute an:

1 // src/app/flight-booking/flight-edit/flight-edit.component.ts

2

3 import { Component, OnInit } from '@angular/core';

4 import { ActivatedRoute } from '@angular/router';

5

6 @Component({

7 selector: 'app-flight-edit',

8 templateUrl: './flight-edit.component.html',

9 styleUrls: ['./flight-edit.component.scss']

10 })

11 export class FlightEditComponent implements OnInit {

12

Navigationsstrukturen schaffen: Der Angular Router 63

13 id = 0;

14 showDetails = false;

15

16 constructor(private route: ActivatedRoute) { }

17

18 ngOnInit(): void {

19 this.route.params.subscribe(p => {

20 this.id = p.id;

21 this.showDetails = p.showDetails;

22 });

23 }

24

25 }

Die ActivatedRoute bietet neben anderen Eigenschaften, die die gerade aktivierte Route beschreiben,
ein Observable params an. Dieses veröffentlicht sämtliche Routing-Parameter über ein Objekt, das
als Dictionary genutzt wird.

Bei id handelt es sich um jenen Parameter, den wir in der Routenkonfiguration vorgesehen haben.
Den Parameter showDetails habenwir hingegen nicht konfiguriert. Aus diesemGrund geht Angular
davon aus, dass er in Form eines Name/Wert-Paares an den Pfad angehängt wird:

1 /flight-edit/17;showDetails=true

Im letzteren Fall spricht der URL-Standard auch über Matrix-Parameter. Diese werden durch
Strichpunkte getrennt und beziehen sich per Definition auf das letzte Url-Segment und bei Angular
somit auf die damit assoziierte Komponente. Der besser bekannte Query-String, der nach einem
Fragezeichen an die Url angehängt wird, bezieht sich hingegen per Definition immer auf die gesamte
Url.

Das Template der Komponente präsentiert diese Eigenschaften:

1 <h1>Flight Edit</h1>

2

3 <p>

4 Id: {{id}}

5 </p>

6 <p>

7 ShowDetail: {{id}}

8 </p>

An dieser Stelle wollen wir uns mit der bloßen Ausgabe der Parameter zufriedengeben. Allerdings
könnte man die Informationen aus den letzten Kapiteln nutzen, um den Flug mit der erhaltenen Id
zu laden und über ein Formular zum Editieren anzubieten.

Navigationsstrukturen schaffen: Der Angular Router 64

Auf parametrisierte Routen verweisen

Um auf parametrisierte Routen zu verweisen, nimmt routerLink die einzelnen URL-Segmente, aber
auch Matrixparameter als Array entgegen. Das nachfolgende Beispiel erweitert das Template der
FlightCardComponent um routerLink, der zur zuvor eingeführten FlightEditComponent führt:

1 <!-- src/app/flight-booking/flight-card/flight-card.component.html -->

2

3 [...]

4 <p>

5 <button class="btn btn-default"

6 *ngIf="!selected"

7 (click)="select()">Select</button>

8

9 <button class="btn btn-default"

10 *ngIf="selected"

11 (click)="deselect()">Remove</button>

12

13 <!-- Diesen Link einfügen: -->

14 <a class="btn btn-default"

15 [routerLink]="['../flight-edit', item?.id, {showDetails:false}]">

16 Edit

17

18 </p>

19 [...]

Die einzelnen Array-Einträge repräsentieren URL-SegmenteURL-Segment. Die Direktive
routerLink führt eine URL-Codierung durch und kettet sie anschließend zu einer URL zusammen.
Die Eigenschaften von Objekten werden dabei zu Matrixparametern. Aus dem im betrachteten
Beispiel verwendeten Array entsteht somit der folgende Pfad, wenn wir davon ausgehen, dass
item.id den Wert 3 aufweist:

1 ../flight-edit/3;showDetails=true

Das Präfix ../ ist notwendig, da wir vorerst davon ausgehen, dass die FlightCardComponent von
der FlightSearchComponent aufgerufen wird. Und ihre Route ist in der Routenkonfiguration einer
Schwester von flight-edit.

Programmatisch Routen

Statt mit Hyperlinks können Sie einen Routenwechsel auch programmatisch anstoßen. Lassen Sie
sich dazu den Router injizieren:

Navigationsstrukturen schaffen: Der Angular Router 65

1 […]

2 import { Router } from '@angular/router';

3

4 @Component({ […] })

5 export class AppComponent {

6 constructor(private router: Router) { }

7

8 goHome(): void {

9 this.router.navigate(['/home']);

10 }

11 }

Die Methode navigate nimmt den Pfad der gewünschten Route als Array entgegen. Jeder Array-
Eintrag entspricht einemURL-Segment. Diese werden URL-codiert und zusammengekettet. Der sich
so ergebende Pfad wird zur Identifizierung der Zielroute verwendet. Der Aufruf

1 this.router.navigate(['/flight-edit', id]);

führt somit zur Aktivierung der Route /flight-edit/17, wenn man davon ausgeht, dass die Variable
id den Wert 17 hat.

Bonus: Routing und Module

Bis jetzt haben wir zur Vereinfachung nur ein einziges Modul, nämlich das AppModule, verwendet.
Um die Anwendung besser zu strukturieren bietet es sich an, jedes einzelne Feature in ein eigenes
Modul zu verschieben. Jedes dieser Module bekommt in der Regel einen eigenen Ordner aber auch
eine eigene Routen-Konfiguration.

In unserem Fall bietet sich ein FlightBookingModule an:

Navigationsstrukturen schaffen: Der Angular Router 66

Feature Module für Flight Booking

Sämtliche Komponenten unseres Flight Booking-Features wurden in den neuen flight-booking

Ordner verschoben. Falls Sie das selbst ausprobieren sollten sie sicherstellen, dass nach dem
Verschieben sämtliche Import-Anweisungen noch auf die korrekten Dateipfade verweisen.

Da diese Vorgehensweise die Struktur unserer Anwendung ein wenig verändert, haben
wir den Quellcode für dieses Bonus-Kapitel in einen eigenen Branch unseres Beispiel-
Projektes¹² ausgelagert.

ImOrdner flight-booking findenwir auch die Routen-Konfiguration, die sich auf die Komponenten
des Modules beschränkt:

¹²https://github.com/manfredsteyer/angular-intro/tree/modules

https://github.com/manfredsteyer/angular-intro/tree/modules
https://github.com/manfredsteyer/angular-intro/tree/modules
https://github.com/manfredsteyer/angular-intro/tree/modules

Navigationsstrukturen schaffen: Der Angular Router 67

1 // src/app/flight-booking/flight-booking.routes.ts

2

3 import { Routes } from '@angular/router';

4 import { FlightEditComponent }

5 from './flight-edit/flight-edit.component';

6 import { FlightSearchComponent }

7 from './flight-search/flight-search.component';

8 import { PassengerSearchComponent }

9 from './passenger-search/passenger-search.component';

10

11 export const FLIGHT_BOOKING_ROUTES: Routes = [

12 {

13 path: 'flight-search',

14 component: FlightSearchComponent

15 },

16 {

17 path: 'passenger-search',

18 component: PassengerSearchComponent

19 },

20 {

21 path: 'flight-edit/:id',

22 component: FlightEditComponent

23 },

24];

Beim FlightBookingModule handelt es sich wie beim AppModule um eine Klasse mit Metadaten:

1 // src/app/flight-booking/flight-booking.module.ts

2

3 import { NgModule } from '@angular/core';

4 import { CommonModule } from '@angular/common';

5 import { FlightSearchComponent }

6 from './flight-search/flight-search.component';

7 import { FlightCardComponent }

8 from './flight-card/flight-card.component';

9 import { PassengerSearchComponent }

10 from './passenger-search/passenger-search.component';

11 import { FlightEditComponent }

12 from './flight-edit/flight-edit.component';

13 import { RouterModule } from '@angular/router';

14 import { FormsModule } from '@angular/forms';

15

16 import { FLIGHT_BOOKING_ROUTES } from './flight-booking.routes';

Navigationsstrukturen schaffen: Der Angular Router 68

17

18 @NgModule({

19 imports: [

20 CommonModule,

21

22 // Important: Routes are referenced with **forChild**

23 RouterModule.forChild(FLIGHT_BOOKING_ROUTES),

24

25 // Dont't forget this if you want to work with Forms

26 FormsModule,

27],

28 declarations: [

29 FlightSearchComponent,

30 FlightCardComponent,

31 PassengerSearchComponent,

32 FlightEditComponent,

33],

34 })

35 export class FlightBookingModule { }

Wichtig ist hier, das die Routen für Feature-Module an RouterModule.forChild zu übergeben sind.
Lediglich das Root-Modul, also unser AppModule, ruft RouterModule.forRoot auf. Das ist eine übliche
Konvention in der Welt von Angular. Sie stellt sicher, dass eine Bibliothek wie der Router globale
Services nur ein einzigesmal via forRoot einrichtet. Bei jeder weiteren Verwendung richtet forChild
nur mehr jene zusätzlichen Strukturen ein, die für die zusätzliche Nutzung im jeweiligen Feature-
Module benötigt werden.

Außerdem importiert dieses Beispiel das CommonModule. Diese Modul kommt mit Direktiven wie
*ngIf oder *ngFor sowie mit den üblichen Pipes wie date oder json. Da wir diese Konstrukte in der
Regel brauchen, erhält in der Regel jedes weitere Modul diesen Import.

Eventuell ist Ihnen aufgefallen, dass das AppModule ohne Importieren des CommonModu-
les auskommt und hier trotzdem *ngIf, *ngFor sowie die erwähnten Direktiven die ganze
Zeit zur Verfügung standen. Das liegt daran, dass das BrowserModule, das wir von Anfang
an im AppModule importiert haben, sämtliche Inhalte des CommonModules bietet.

Damit Angular das neue FlightBookingModule berücksichtigt, müssen wir es noch ins AppModule
importieren:

Navigationsstrukturen schaffen: Der Angular Router 69

1 // src/app/app.module.ts

2

3 [...]

4

5 // Add this import:

6 import { FlightBookingModule }

7 from './flight-booking/flight-booking.module';

8

9 @NgModule({

10 imports: [

11 RouterModule.forRoot(APP_ROUTES),

12 HttpClientModule,

13 BrowserModule,

14 FormsModule,

15

16 // Add import for Feature-Module:

17 FlightBookingModule,

18],

19 declarations: [

20 AppComponent,

21 SidebarComponent,

22 NavbarComponent,

23 HomeComponent,

24 AboutComponent,

25 NotFoundComponent

26],

27 providers: [],

28 bootstrap: [

29 AppComponent

30]

31 })

32 export class AppModule { }

Zusammenfassung

Der von Angular angebotene Router ermöglicht es, unterschiedliche Seiten innerhalb einer Single
Page Application (SPA) zu simulieren. Um ihn zu nutzen, bilden Sie Pfade auf Komponenten
ab. Finden sich diese Pfade in der aufgerufenen URL, aktiviert der Router die damit assoziierten
Komponenten in einem Platzhalter der Seite. Außerdem können Sie über die URL Parameter an die
aktivierte Komponente weitergeben.

Nächste Schritte
Unser Angular-Buch bei O’Reilly

Falls Ihnen die Art undWeise, wiewir die Entwicklungmit Angular in diesemBuch erklären, werden
Sie auch unser “großes” Angular-Buch bei O’Reilly mögen:

Angular Buch bei O’Reilly

Es liegt mittlerweile in der 3. Auflage vor. Alle Details finden sich hier¹³.

¹³https://oreilly.de/produkt/angular-2/

https://oreilly.de/produkt/angular-2/
https://oreilly.de/produkt/angular-2/

Nächste Schritte 71

Trainings und Consulting

Erfahren Sie mehr über Angular für große Unternehmens-Anwendungen in unserem Advanced
Online Workshop¹⁴:

Advanced Angular Workshop

Sichern Sie sich Ihre Tickets jetzt für sich und Ihre Kollegen.

Darüber hinaus bieten wir folgende Themen als Teil unserer Schulungs- oder Beratungsworkshops
an:

• Angular Workshop: Strukturierte Einführung
• Advanced Angular: Enterprise Solutions und Architektur
• Professional Angular Testing Workshop (Cypress, Just, etc.)
• Reaktive Architekturen mit Angular (RxJS and NGRX)
• Angular Review Workshop
• Angular Upgrade Workshop

Wenn Sie Fragen haben, können Sie gerne auf uns zukommen: office@softwarararchitekt.at¹⁵.

Bleiben Sie mit uns in Kontakt, z. B. via Twitter¹⁶ oder Facebook¹⁷.

¹⁴https://www.angulararchitects.io/en/angular-workshops/advanced-angular-enterprise-architecture-incl-ivy/
¹⁵mailto:office@softwarararchitekt.at
¹⁶https://twitter.com/manfredsteyer
¹⁷https://www.facebook.com/manfred.steyer

https://www.angulararchitects.io/en/angular-workshops/advanced-angular-enterprise-architecture-incl-ivy/
https://www.angulararchitects.io/en/angular-workshops/advanced-angular-enterprise-architecture-incl-ivy/
mailto:office@softwarararchitekt.at
https://twitter.com/manfredsteyer
https://www.facebook.com/manfred.steyer
https://www.angulararchitects.io/en/angular-workshops/advanced-angular-enterprise-architecture-incl-ivy/
mailto:office@softwarararchitekt.at
https://twitter.com/manfredsteyer
https://www.facebook.com/manfred.steyer

	Inhaltsverzeichnis
	Einleitung
	Quellcode
	Kontakt
	Trainings and Consulting

	Erste Schritte mit Angular
	Bevor es losgeht: Werkzeuge installieren
	Eine neue Angular-Application erzeugen
	Ihre Angular-Anwendung starten
	Build mit CLI
	Das generierte Projekt erkunden
	Programmieren mit ``Stil'': Bootstrap installieren
	Zusammenfassung

	Ihr erste Angular-Anwendung: Komponenten, Datenbindung und HTTP-Zugriff
	Interface für Datenobjekt erzeugen
	Angular-Komponente erzeugen
	Komponentenlogik
	Auf das Backend zugreifen
	Templates und die Datenbindung
	Komponenten einbinden
	Anwendung starten
	Fehler in der Entwicklerkonsole entdecken
	Zusammenfassung

	Wiederverwendbare Sub-Komponenten und Services
	Sub-Komponenten mit Event- und Property-Bindings
	Wiederverwendbare Logik in Services auslagern
	Zusammenfassung

	Navigationsstrukturen schaffen: Der Angular Router
	Überblick
	Komponenten für das Routing einrichten
	Routing-Konfiguration einrichten
	Platzhalter in AppComponent hinterlegen
	Hyperlinks zum Aktivieren von Routen nutzen
	Routen-Parameter auslesen
	Auf parametrisierte Routen verweisen
	Programmatisch Routen
	Bonus: Routing und Module
	Zusammenfassung

	Nächste Schritte
	Unser Angular-Buch bei O'Reilly
	Trainings und Consulting

